MMM
YYYY
Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256QAM millimeter-wave wireless communications by time-domain digital coding metasurface
通过时域数字编码超表面对谐波幅度和相位进行准确和宽带操作,以达到 256QAM 毫米波无线通信
時間領域デジタルコーディングメタサーフェスによる256QAMミリ波無線通信に到達するための高調波振幅と位相の正確でブロードバンドな操作
시간 영역 디지털 코딩 메타서페이스를 통해 256QAM 밀리미터파 무선 통신에 도달하기 위한 고조파 진폭 및 위상의 정확하고 광대역 조작
Manipulaciones precisas y de banda ancha de amplitudes y fases armónicas para alcanzar comunicaciones inalámbricas de onda milimétrica de 256QAM mediante metasuperficie de codificación digital en el dominio del tiempo
Manipulations précises et à large bande des amplitudes et des phases harmoniques pour atteindre des communications sans fil à ondes millimétriques 256QAM par métasurface de codage numérique dans le domaine temporel
Точные и широкополосные манипуляции с амплитудами и фазами гармоник для достижения беспроводной связи в миллиметровом диапазоне 256QAM с помощью метаповерхности цифрового кодирования во временной области
Ming Zheng Chen 陈明正 ¹ ² ⁶, Wankai Tang 唐万恺 ³ ⁶, Jun Yan Dai 戴俊彦 ¹ ² ⁴, Jun Chen Ke ¹ ², Lei Zhang ¹ ² ⁶, Cheng Zhang ¹, Jin Yang ¹ ² ⁶, Lianlin Li ⁵ ⁶, Qiang Cheng 程强 ¹ ² ⁶, Shi Jin 金石 ¹ ³ ⁶, Tie Jun Cui 傅晓建 ¹ ² ⁶
¹ Institute of Electromagnetic Space, Southeast University, Nanjing 210096, China; 东南大学 电磁空间科学与技术研究院
² State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China; 东南大学 毫米波国家重点实验室
³ National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China; 东南大学 移动通信国家重点实验室
⁴ State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China; 香港城市大学 太赫兹及毫米波国家重点实验室
⁵ State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, Peking University, Beijing 100871, China; 北京大学 电子学系 区域光纤通信网与新型光通信系统国家重点实验室
⁶ Center of Intelligent Metamaterials, Pazhou Laboratory, Guangzhou 510330, China 广州琶洲实验室 智能超材料研究中心
National Science Review, 29 July 2021
Abstract

We propose a theoretical mechanism and new coding strategy to realize extremely accurate manipulations of nonlinear electromagnetic harmonics in ultrawide frequency band based on a time-domain digital coding metasurface (TDCM). Using the proposed mechanism and coding strategy, we design and fabricate a millimeter-wave (mmWave) TDCM, which is composed of reprogrammable meta-atoms embedded with PIN diodes.

By controlling the duty ratios and time delays of the digital coding sequences loaded on TDCM, experimental results show that both amplitudes and phases of different harmonics can be engineered at will simultaneously and precisely in broad frequency band from 22 to 33 GHz, even when the coding states are imperfect, which have good agreements with theoretical calculations.

Based on the fabricated high-performance TDCM, we further propose and experimentally realize a large-capacity mmWave wireless communication system, where 256 quadrature amplitude modulation (QAM) along with other schemes are demonstrated. The new wireless communication system has a much simpler architecture than the currently used mmWave wireless systems, and hence can significantly reduce the hardware cost.

We believe that the proposed method and system architecture can find vast applications in the future mmWave and terahertz-wave (THzWave) wireless communication and radar systems.
National Science Review_1
National Science Review_2
National Science Review_3
National Science Review_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Universal Adversarial Examples and Perturbations for Quantum Classifiers
Soft and Disordered Hyperuniform Elastic Metamaterials for Highly Efficient Vibration Concentration
Identification of twist-angle-dependent excitons in WS₂/WSe₂ heterobilayers
H7N9 virus infection triggers lethal cytokine storm by activating gasdermin E-mediated pyroptosis of lung alveolar epithelial cells
The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary
Water molecules bonded to the carboxylate groups at the inorganic-organic interface of an inorganic nanocrystal coated with alkanoate ligands
Discovery of carbon-based strongest and hardest amorphous material
Cascade-responsive Nanobomb with domino effect for anti-tumor synergistic therapies
Crowded catalyst, better catalyst
Postmortem tissue proteomics reveals the pathogenesis of multiorgan injuries of COVID-19
Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis
Post-ingestion conversion of dietary indoles into anticancer agents



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper