MMM
YYYY
Rapid fabrication of microrings with complex cross-section using annular vortex beams
使用环形涡旋光束快速制造具有复杂横截面的微环
環状渦ビームを使用した複雑な断面を持つマイクロリングの迅速な製造
환형 와류 빔을 사용하여 복잡한 단면을 가진 마이크로링의 신속한 제작
Fabricación rápida de microrings con sección transversal compleja utilizando vigas de vórtice anulares
Fabrication rapide de microanneaux à section complexe à l'aide de faisceaux vortex annulaires
Быстрое изготовление микрокольцов сложного поперечного сечения с использованием кольцевых вихревых пучков
Chenchu Zhang 张晨初 ¹, Hanchang Ye 叶罕昌 ¹, Rui Cao 曹锐 ², Shengyun Ji 姬生云 ³, Hang Zhang 张衡 ¹, Hanlin Zhao 赵麟寒 ¹, Sizhu Wu 吴思竹 ¹, Hua Zhai 翟华 ¹
¹ Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China
中国 合肥 合肥工业大学工业与装备技术研究院 航空结构件成形制造与装备安徽省重点实验室
² Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
³ Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
中国 合肥 中国科学技术大学精密机械与精密仪器系 合肥微尺度物质科学国家实验室 中国科学院材料力学行为与设计重点实验室
Chinese Optics Letters, 1 September 2021
Abstract

Ring-shaped focus, such as focused vortex beam, has played an important role in microfabrication and optical tweezers. The shape and diameter of ring-shaped focus can be easily adjusted by the topological charge of vortex. However, the flow energy is also related to the topological, making the individual control of diameter and flow energy of vortex beam is impossible. Meanwhile, the shape of focus vortex beam remains to the hollow ring. Expanding the shape of focus structural light broadens the applications of vortex beam in the field of microfabrication.

Here, we proposed a ring-shaped focus with controllable gaps by multiplexing the vortex beam and annular beam. The multiplexed beam has the several advantages, such as the diameter and flow energy of the focal point can be individually controlled, is not affected by the zero-order beam, and the gap size and position are controllable.
Chinese Optics Letters_1
Chinese Optics Letters_2
Chinese Optics Letters_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications
A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency
Multi-wavelength nanowire micro-LEDs for future high speed optical communication
Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting
Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
Generation of lossy mode resonances (LMR) using perovskite nanofilms
Acousto-optic scanning multi-photon lithography with high printing rate
Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
Miniature tunable Airy beam optical meta-device
Data-driven polarimetric imaging: a review
Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper