Molecular imprinting and cladding produces antibody mimics with significantly improved affinity and specificity
분자 각인 및 클래딩은 친화도 및 특이성이 크게 개선된 항체 모방체를 생성합니다
La impronta molecular y el revestimiento producen imitaciones de anticuerpos con una afinidad y especificidad significativamente mejoradas
L'impression moléculaire et le revêtement produisent des imitations d'anticorps avec une affinité et une spécificité considérablement améliorées
Молекулярный импринтинг и оболочка создают имитаторы антител со значительно улучшенной аффинностью и специфичностью
Rongrong Xing 邢荣荣, Zhanchen Guo 郭展辰, Haifeng Lu 卢海峰, Qi Zhang 张齐, Zhen Liu 刘震
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
中国 南京 南京大学化学化工学院 生命分析化学国家重点实验室
Science Bulletin, 5 October 2021

Molecularly imprinted polymers (MIPs), as important mimics of antibodies, are chemically synthesized by polymerization in the presence of a target compound. MIPs have found wide applications in important fileds. However, the current molecular imprinting technology suffers from a dilemma; there is often a compromise between the best affinity and the best specificity for MIPs prepared under optimized conditions. Herein, we proposed a new strategy called molecular imprinting and cladding (MIC) to solve this issue.

The principle is straightforward; after molecular imprinting, a chemically inert cladding thinlayer is generated to precisely cover non-imprinted area. We further proposed a special MIC approach for controllably engineering protein binders. The prepared cladded MIPs (cMIPs) exhibited significantly improved affinity and specificity. The general applicability of the proposed strategy and method was verified by engineering of cMIPs for the recognition of a variety of different proteins. The feasibility of cMIPs for real applications was demonstrated by fluorescence imaging of cancer cells against normal cells and immunoassay of C-peptide in human urine.

This study opened up a new avenue for controllably engineering protein-specific antibody mimics with excellent recognition properties, holding great prospective in important applications such as disease diagnosis and nanomedicine.
Science Bulletin_1
Science Bulletin_2
Science Bulletin_3
Reviews and Discussions
An Annotated List of Lizards (Sauria: Squamata) Recorded from the People’s Republic of China
Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations
Characteristics of the lunar samples returned by Chang'E-5 mission
Flexible Diodes/Transistors Based on Tunable p-n-Type Semiconductivity in Graphene/Mn-Co-Ni-O Nanocomposites
Resonance Algorithm: A New Look at the Shortest Path Problem
Inter-annual variations of 6.5-day planetary waves and their relations with QBO
Age and composition of young basalts on the Moon, measured from samples returned by Chang'e-5
Synchronization in PT-symmetric optomechanical resonators
Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials
Transplantation of a Beating Heart: A First in Human
Fast Configuration Change Impact Analysis for Network Overlay Data Center Networks
Fluidic Endogenous Magnetism and Magnetic Monopole Clues from Liquid Metal Droplet Machine

Previous Article                                Next Article
Copyright © Hot Paper