YYYY
MMM
CMML: Contextual Modulation Meta Learning for Cold-Start Recommendation
CMML:冷启动推荐的上下文调制元学习
CMML:コールドスタート勧告のための文脈変調メタ学習
CMML:콜 드 시작 추천 컨 텍스트 변조 원 학습
CMML: metaaprendizaje de modulación de contexto recomendado para arranque en frío
CMML: méta - apprentissage de la modulation contextuelle recommandée pour le démarrage à froid
CMML: холодный запуск рекомендуемый элемент модуляции контекста
Xidong Feng ¹, Chen Chen ², Dong Li ², Mengchen Zhao ², Jianye Hao 郝建业 ², Jun Wang 汪军 ¹
¹ University College London
² Noah’s Ark Lab, Huawei
华为诺亚方舟实验室
arXiv, 24 August 2021
Abstract

Practical recommender systems experience a cold-start problem when observed user-item interactions in the history are insufficient. Meta learning, especially gradient based one, can be adopted to tackle this problem by learning initial parameters of the model and thus allowing fast adaptation to a specific task from limited data examples.

Though with significant performance improvement, it commonly suffers from two critical issues: the non-compatibility with mainstream industrial deployment and the heavy computational burdens, both due to the inner-loop gradient operation. These two issues make them hard to be applied in practical recommender systems. To enjoy the benefits of meta learning framework and mitigate these problems, we propose a recommendation framework called Contextual Modulation Meta Learning (CMML).

CMML is composed of fully feed-forward operations so it is computationally efficient and completely compatible with the mainstream industrial deployment. CMML consists of three components, including a context encoder that can generate context embedding to represent a specific task, a hybrid context generator that aggregates specific user-item features with task-level context, and a contextual modulation network, which can modulate the recommendation model to adapt effectively.

We validate our approach on both scenario-specific and user-specific cold-start setting on various real-world datasets, showing CMML can achieve comparable or even better performance with gradient based methods yet with much higher computational efficiency and better interpretability.
arXiv_1
arXiv_2
arXiv_3
arXiv_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Separation and identification of mixed signal for distributed acoustic sensor using deep learning
Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
Partially coherent optical chip enables physical-layer public-key encryption
Advanced applications of pulsed laser deposition in electrocatalysts for hydrogen-electric conversion systems
A review on optical torques: from engineered light fields to objects
IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
Halide perovskite volatile unipolar nanomemristor



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper