YYYY
MMM
Essential role of MALAT1 in reducing traumatic brain injury
MALAT1 在减少创伤性脑损伤中的重要作用
外傷性脳損傷の軽減におけるMALAT1の重要な役割
외상성 뇌 손상을 줄이는 데 있어 MALAT1의 필수 역할
Papel esencial de MALAT1 en la reducción de lesiones cerebrales traumáticas
Rôle essentiel de MALAT1 dans la réduction des lésions cérébrales traumatiques
Существенная роль MALAT1 в уменьшении черепно-мозговой травмы
Na Wu ¹, Chong-Jie Cheng 程崇杰 ¹, Jian-Jun Zhong 钟建军 ¹, Jun-Chi He 何骏驰 ¹, Zhao-Si Zhang 张兆斯 ¹, Zhi-Gang Wang ¹, Xiao-Chuan Sun 孙晓川 ¹, Han Liu 刘汉 ¹ ²
¹ Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
中国 重庆 重庆医科大学附属第一医院神经外科
² Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao Campus), Qingdao, Shandong Province, China
中国 山东 青岛 山东大学齐鲁医院(青岛)神经外科
Neural Regeneration Research, 7 January 2022
Abstract

As a highly evolutionary conserved long non-coding RNA, metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was first demonstrated to be related to lung tumor metastasis by promoting angiogenesis. To investigate the role of MALAT1 in traumatic brain injury, we established mouse models of controlled cortical impact and cell models of oxygen-glucose deprivation to mimic traumatic brain injury in vitro and in vivo.

The results revealed that MALAT1 silencing in vitro inhibited endothelial cell viability and tube formation but increased migration. In MALAT1-deficient mice, endothelial cell proliferation in the injured cortex, functional vessel density and cerebral blood flow were reduced. Bioinformatic analyses and RNA pull-down assays validated enhancer of zeste homolog 2 (EZH2) as a downstream factor of MALAT1 in endothelial cells.

Jagged-1, the Notch homolog 1 (NOTCH1) agonist, reversed the MALAT1 deficiency-mediated impairment of angiogenesis. Taken together, our results suggest that MALAT1 controls the key processes of angiogenesis following traumatic brain injury in an EZH2/NOTCH1-dependent manner.
Neural Regeneration Research_1
Neural Regeneration Research_2
Neural Regeneration Research_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Separation and identification of mixed signal for distributed acoustic sensor using deep learning
Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
Partially coherent optical chip enables physical-layer public-key encryption
Advanced applications of pulsed laser deposition in electrocatalysts for hydrogen-electric conversion systems
A review on optical torques: from engineered light fields to objects
IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
Halide perovskite volatile unipolar nanomemristor



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper