YYYY
MMM
Recursive Multi-Tensor Contraction for XEB Verification of Quantum Circuits
量子电路XEB验证的递归多变分法和张量压缩
量子回路のXEB検証のための再帰的マルチテンソル収縮
양자 회로 XEB 검증 의 재 귀 다 장 량 압축
Compresión multitensor recursiva verificada por el circuito cuántico XEB
Compression multitensorielle récursive pour la vérification XEB des circuits quantiques
Рекурсивное мульти-тензорное сжатие для проверки квантовых схем с помощью XEB
Gleb Kalachev ¹ ², Pavel Panteleev ¹ ², Man-Hong Yung 翁文康 ¹ ³
¹ Huawei 2012 Lab
华为2012实验室
² Lomonosov Moscow State University
³ Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
中国 深圳 南方科技大学量子科学与工程研究院及物理系
arXiv, 12 August 2021
Abstract

The computational advantage of noisy quantum computers have been demonstrated by sampling the bitstrings of quantum random circuits. An important issue is how the performance of quantum devices could be quantified in the so-called “supremacy regime”. The standard approach is through the linear cross entropy (XEB), where the theoretical value of the probability is required for each bitstring.

However, the computational cost of XEB grows exponentially. So far, random circuits of the 53-qubit Sycamore chip was verified up to 10 cycles of gates only; the XEB fidelities of deeper circuits were approximated with simplified circuits instead. Here we present a multitensor contraction algorithm for speeding up the calculations of XEB of quantum circuits, where the computational cost can be significantly reduced through a recursive manner with some form of memoization.

As a demonstration, we analyzed the experimental data of the 53-qubit Sycamore
chip and obtained the exact values of the corresponding XEB fidelities up to 16 cycles using only moderate computing resources (few GPUs). If the algorithm was implemented on the Summit supercomputer, we estimate that for the 20-cycles supremacy circuits, it would only cost 7.5 days, which is several orders of magnitudes lower than previously estimated in the literature.
arXiv_1
arXiv_2
arXiv_3
arXiv_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection
Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
Review for wireless communication technology based on digital encoding metasurfaces
Coulomb attraction driven spontaneous molecule-hotspot paring enables universal, fast, and large-scale uniform single-molecule Raman spectroscopy
Multiphoton intravital microscopy in small animals of long-term mitochondrial dynamics based on super‐resolution radial fluctuations
Non-volatile tunable multispectral compatible infrared camouflage based on the infrared radiation characteristics of Rosaceae plants
Spectro-polarimetric detection enabled by multidimensional metasurface with quasi-bound states in the continuum
Emerging low-dimensional perovskite resistive switching memristors: from fundamentals to devices
CW laser damage of ceramics induced by air filament
Eco-friendly quantum-dot light-emitting diode display technologies: prospects and challenges
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
Observation of polaronic state assisted sub-bandgap saturable absorption



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper