MMM
YYYY
Soft and Disordered Hyperuniform Elastic Metamaterials for Highly Efficient Vibration Concentration
用于高效振动集中的柔软无序超均匀弹性超材料
非常に効率的な振動集中のための柔らかく無秩序な超均一弾性メタマテリアル
고효율 진동 집중을 위한 부드럽고 무질서한 초균일 탄성 메타물질
Metamateriales elásticos hiperuniformes blandos y desordenados para una concentración de vibraciones altamente eficiente
Métamatériaux élastiques hyperuniformes mous et désordonnés pour une concentration de vibration très efficace
Мягкие и неупорядоченные гипероднородные эластичные метаматериалы для высокоэффективной концентрации вибрации
Hanchuan Tang ¹, Zhuoqun Hao ¹, Ying Liu ¹, Ye Tian ¹, Hao Niu 牛浩 ¹, Jianfeng Zang 臧剑锋 ¹ ²
¹ School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China 华中科技大学 光学与电子信息学院 武汉光电国家实验室
² The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China 华中科技大学 数字制造装备与技术国家重点实验室
National Science Review, 29 July 2021
Abstract

Vibrations, which widely exist throughout the world, could be a nearly endless and locally obtained green energy source. It has been a long-standing challenge to efficiently utilize the dispersed vibration energy especially within the high frequency range, since the amplitudes of high frequency vibrations in local parts of objects are relatively weak.

Here, for the first time, we proposed a soft and disordered hyperuniform elastic metamaterial (DHEM), achieving a remarkable concentration of vibrations in broad frequency bands by a maximum enhancement factor of ∼4000 at 1930 Hz. The DHEM with rational sizes from ∼1 cm to ∼1000 cm covers a broad range of frequencies from ∼10 Hz to ∼10 kHz, which are emitted by many vibration sources including domestic appliances, factories and transportation systems, for example.

Moreover, the performance of soft DHEM under deformation is validated, enabling conformal attachments on uneven objects. Our findings lay the groundwork for reducing traditional energy consumption by recovering some of the energy dissipated by devices in the working world.
National Science Review_1
National Science Review_2
National Science Review_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Universal Adversarial Examples and Perturbations for Quantum Classifiers
Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256QAM millimeter-wave wireless communications by time-domain digital coding metasurface
Identification of twist-angle-dependent excitons in WS₂/WSe₂ heterobilayers
H7N9 virus infection triggers lethal cytokine storm by activating gasdermin E-mediated pyroptosis of lung alveolar epithelial cells
The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary
Water molecules bonded to the carboxylate groups at the inorganic-organic interface of an inorganic nanocrystal coated with alkanoate ligands
Discovery of carbon-based strongest and hardest amorphous material
Cascade-responsive Nanobomb with domino effect for anti-tumor synergistic therapies
Crowded catalyst, better catalyst
Postmortem tissue proteomics reveals the pathogenesis of multiorgan injuries of COVID-19
Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis
Post-ingestion conversion of dietary indoles into anticancer agents



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper