100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution
100赫兹帧率切换三维轨道角动量复用全息通过交叉卷积
クロス畳み込みによる100ヘルツのフレームレート切り替え三次元軌道角運動量多重化ホログラフィー
크로스 컨볼루션을 통한 100Hz 프레임 속도 스위칭 3차원 궤도 각운동량 다중화 홀로그래피
Holografía de multiplexación de momento angular orbital tridimensional de conmutación de velocidad de cuadro de 100 Hertz a través de convolución cruzada
Commutation de fréquence d'images de 100 Hertz holographie de multiplexage de moment cinétique orbital tridimensionnel via convolution croisée
Переключение с частотой кадров 100 Гц, трехмерное мультиплексирование орбитального углового момента, голография с помощью перекрестной свертки
¹ Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
中国 上海 上海理工大学光子芯片研究院
² Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
中国 上海 上海理工大学光电信息与计算机工程学院 人工智能纳米光子学中心
The orbital angular momentum (OAM) of light has been implemented as an information carrier in OAM holography. Holographic information can be multiplexed in theoretical unbounded OAM channels, promoting the applications of optically addressable dynamic display and high-security optical encryption.
However, the frame-rate of the dynamic extraction of the information reconstruction process in OAM holography is physically determined by the switching speed of the incident OAM states, which is currently below 30 Hz limited by refreshing rate of the phase-modulation spatial light modulator (SLM).
Here, based on a cross convolution with the spatial frequency of the OAM-multiplexing hologram, the spatial frequencies of an elaborately-designed amplitude distribution, namely amplitude decoding key, has been adopted for the extraction of three-dimensional holographic information encoded in a specific OAM information channel.
We experimentally demonstrated a dynamic extraction frame rate of 100 Hz from an OAM multiplexing hologram with 10 information channels indicated by individual OAM values from –50 to 50. The new concept of cross convolution theorem can even provide the potential of parallel reproduction and distribution of information encoded in many OAM channels at various positions which boosts the capacity of information processing far beyond the traditional decoding methods.
Thus, our results provide a holographic paradigm for high-speed 3D information processing, paving an unprecedented way to achieve the high-capacity short-range optical communication system.