Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death
면역원성 세포 사멸을 촉진하여 암 면역 요법을 강화하기 위한 나노기술 적용
Aplicación de la nanotecnología para potenciar la inmunoterapia contra el cáncer mediante la promoción de la muerte celular inmunogénica
Appliquer la nanotechnologie pour stimuler l'immunothérapie du cancer en favorisant la mort cellulaire immunogène
Применение нанотехнологий для усиления иммунотерапии рака за счет стимуляции гибели иммуногенных клеток
Lvqin Fu ¹, Xianbin Ma ², Yuantong Liu ¹, Zhigang Xu 许志刚 ², Zhijun Sun 孙志军 ¹
¹ The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
中国 武汉 武汉大学口腔医学院 口腔基础医学重点实验室(湖北省科技厅) 口腔生物医学教育部重点实验室
² Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China
中国 重庆 发光与实时分析化学教育部重点实验室 (西南大学) 材料与能源学院 重庆市微纳生物医用材料及器件工程技术研究中心
Chinese Chemical Letters, 29 October 2021

Tumor immunotherapy, especially immune checkpoint blockade (ICB), has revolutionized the cancer field. However, the limited response of tumors to immunotherapy is a major obstacle. Tumor immunogenic cell death (ICD) is a death mode of tumor cells that can promote tumor immunity.

ICD can induce strong antitumor immune responses through the ectopic exposure of calreticulin on the plasma membrane surface and the release of the non-histone nuclear protein high-mobility group box 1 (HMGB1), ATP, and interferon (IFN), thus activating an adaptive immune response against dead cell-associated antigens and enhancing the therapeutic effect of tumor immunotherapy. Chemotherapy, radiotherapy, photothermal therapy, magneto-thermodynamics therapy, nanopulse stimulation, and oncolytic virus therapy can all induce a strong antitumor immune response by ICD.

In addition, the application of nanotechnology can precisely target drug delivery and improve the efficacy of immunotherapy. Here we introduce the basic concepts and molecular mechanisms underlying the induction of ICD. Then, we summarize and discuss the progress in the application of nanotechnology in immunotherapy to promote ICD.

Finally, we attempt to define the challenges and future directions in this area to extend the benefits of ICD to a broader patient population.
Chinese Chemical Letters_1
Chinese Chemical Letters_2
Chinese Chemical Letters_3
Chinese Chemical Letters_4
Reviews and Discussions
An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities
Nonlinear optics with structured light
Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications
Giant and light modifiable third-order optical nonlinearity in a free-standing h-BN film
New approach for the digital reconstruction of complex mine faults and its application in mining
p62/SQSTM1 Participates in the Innate Immune Response of Macrophages Against Candida albicans Infection
Configurable topological beam splitting via antichiral gyromagnetic photonic crystal
Single-molecule optoelectronic devices: physical mechanism and beyond
Functional nonlinear optical nanoparticles synthesized by laser ablation
The m6A methylation regulates gonadal sex differentiation in chicken embryo
A new species in the genus Synanthedon (Lepidoptera: Sesiidae) from China
A review on the forward osmosis applications and fouling control strategies for wastewater treatment

Previous Article                                Next Article
Copyright © Hot Paper