MMM
YYYY
Assessment of cortical bone fatigue using coded nonlinear ultrasound
使用编码非线性超声评估皮质骨疲劳
コード化された非線形超音波を使用した皮質骨疲労の評価
코딩된 비선형 초음파를 이용한 피질골 피로 평가
Evaluación de la fatiga del hueso cortical mediante ecografía no lineal codificada
Évaluation de la fatigue de l'os cortical par échographie non linéaire codée
Оценка утомляемости кортикальной кости с помощью кодированного нелинейного ультразвука
Duwei Liu 刘度为 ¹, Boyi Li 李博艺 ², Dongsheng Bi 毕东生 ¹, Tho N. H. T. Tran ², Yifang Li 李义方 ¹ ³, Dan Liu 刘丹 ¹, Ying Li 李颖 ¹, Dean Ta 他得安 ¹ ²
¹ Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
中国 上海 复旦大学信息科学与工程学院生物医学工程中心
² Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
中国 上海 复旦大学工程与应用技术研究院
³ Human Phenome Institute, Fudan University, Shanghai 200433, China
中国 上海 复旦大学人类表型组研究院
Chinese Physics B, 23 June 2021
Abstract

Bone fatigue accumulation is a factor leading to bone fracture, which is a progressive process of microdamage deteriorating under long-term and repeated stress. Since the microdamage of the early stage in bone is difficult to be investigated by linear ultrasound, the second harmonic generation method in nonlinear ultrasound technique is employed in this paper, which is proved to be more sensitive to microdamage.

To solve the deficiency that the second harmonic component is easily submerged by noise in traditional nonlinear measurement, a weighted chirp coded sinusoidal signal was applied as the ultrasonic excitation, while pulse inversion is implemented at the receiving side. The effectiveness of this combination to improve the signal-to-noise ratio has been demonstrated by in vitro experiment. Progressive fatigue loading experiments were conducted on the cortical bone plate in vitro for microdamage generation.

There was a significant increase in the slope of the acoustic nonlinearity parameter with the propagation distance (increased by 8% and 24% respectively) when the bone specimen was at a progressive level of microdamage. These results indicate that the coded nonlinear ultrasonic method might have the potential in diagnosing bone fatigue.
Chinese Physics B_1
Chinese Physics B_2
Chinese Physics B_3
Chinese Physics B_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
Optical scanning endoscope via a single multimode optical fiber
Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications
A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency
Multi-wavelength nanowire micro-LEDs for future high speed optical communication
Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting
Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
Generation of lossy mode resonances (LMR) using perovskite nanofilms
Acousto-optic scanning multi-photon lithography with high printing rate
Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
Miniature tunable Airy beam optical meta-device



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper