MMM
YYYY
Construction of bifunctional single-atom catalysts on the optimized β-Mo₂C surface for highly selective hydrogenation of CO₂ into ethanol
在优化的 β-Mo₂C 表面构建双功能单原子催化剂,用于将 CO₂ 高选择性加氢成乙醇
CO₂のエタノールへの高度に選択的な水素化のために最適化されたβ-Mo₂C表面上に二官能性単一原子触媒を構築
CO₂를 에탄올로 고도로 선택적으로 수소화하기 위해 최적화된 β-Mo₂C 표면에 이중 기능 단일 원자 촉매 구축
Construcción de catalizadores bifuncionales de un solo átomo en la superficie optimizada de β-Mo₂C para la hidrogenación altamente selectiva de CO₂ en etanol
Construction de catalyseurs bifonctionnels à un seul atome sur la surface optimisée β-Mo₂C pour une hydrogénation hautement sélective du CO₂ en éthanol
Построение бифункциональных одноатомных катализаторов на оптимизированной поверхности β-Mo₂C для высокоселективного гидрирования CO₂ в этанол
Xue Ye 叶雪 ¹ ², Junguo Ma 马俊国 ¹, Wenguang Yu ³, Xiaoli Pan 潘晓丽 ³, Chongya Yang 杨冲亚 ¹ ², Chang Wang 王畅 ³, Qinggang Liu 刘清港 ¹, Yanqiang Huang 黄延强 ¹
¹ CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
中国 大连 中国科学院大连化学物理研究所 催化基础国家重点实验室
² China University of Chinese Academy of Science, Beijing 100049, China
中国 北京 中国科学院大学
³ Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
中国 大连 中国科学院大连化学物理研究所
Journal of Energy Chemistry, 26 October 2021
Abstract

Green and economical CO₂ utilization is significant for CO₂ emission reduction and energy development. Here, the 1D Mo₂C nanowires with dominant (101) crystal surfaces were modified by the deposition of atomic functional components Rh and K. While unmodified β­Mo2C could only convert CO₂ to methanol, the designed catalyst of K₀.₂Rh₀.₂/β-Mo₂C exhibited up to 72.1% of ethanol selectivity at 150 °C. It was observed that the atomically dispersed Rh could form the bifunctional active centres with the active carrier β­Mo2C with the synergistic effects to achieve highly specific controlled C–C coupling.

By promoting the CO₂ adsorption and activation, the introduction of an alkali metal (K) mainly regulated the balanced performance of the two active centres, which in turn improved the hydrogenation selectivity. Overall, the controlled modification of β­Mo₂C provides a new design strategy for the highly efficient, low-temperature hydrogenation of CO₂ to ethanol with single-atom catalysts, which provides an excellent example for the rational design of the complex catalysts.

Graphical abstract

Controlled C–C coupling to ethanol: The single-atom catalyst (SAC) with synergistic bifunctional effects has been developed to achieve the controlled C–C coupling to ethanol from CO₂ hydrogenation. A third component (K) was effectively incorporated to regulate the balanced kinetics of the two functions, thus, giving superior ethanol selectivity at the mild conditions.
Journal of Energy Chemistry_1
Journal of Energy Chemistry_2
Journal of Energy Chemistry_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Cascaded metasurfaces for adaptive aberration correction
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
Spectrally extended line field optical coherence tomography angiography
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
Integrated photonic polarizers with 2D reduced graphene oxide
Tip-enhanced Raman scattering of glucose molecules
Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
Reconfigurable origami chiral response for holographic imaging and information encryption
Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage
Phase reconstruction via metasurface-integrated quantum analog operation
Full-dimensional complex coherence properties tomography for multi-cipher information security
Quantitative detection of trace nanoplastics (down to 50 nm) via surface-enhanced raman scattering based on the multiplex-feature coffee ring



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper