Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
반권적 랜덤 위상 변조 모호 무위영 광학 상간 계층 분석 영상
Deconvolución modulación de fase aleatoria deconvolución sin artefactos tomografía de coherencia óptica
Déconvolution modulation de phase aléatoire décontextualisée sans artefacts tomographie par cohérence optique
Обратная свертка стохастическая фазовая модуляция
Xin Ge 葛昕 ¹, Si Chen 陈思 ¹, Kan Lin 林侃 ¹, Guangming Ni 倪光明 ⁴, En Bo 伯恩 ¹, Lulu Wang 王露露 ¹, Linbo Liu 刘琳波 ¹ ² ³
¹ School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
² School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
³ China-Singapore International Joint Research Institute (CSIJRI), Guangzhou 510000, China
中国 广州 中新国际联合研究院(CSIJRI)
⁴ School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
中国 成都 电子科技大学 光电科学与工程学院
Opto-Electronic Science, 31 January 2024

Deconvolution is a commonly employed technique for enhancing image quality in optical imaging methods. Unfortunately, its application in optical coherence tomography (OCT) is often hindered by sensitivity to noise, which leads to additive ringing artifacts. These artifacts considerably degrade the quality of deconvolved images, thereby limiting its effectiveness in OCT imaging.

In this study, we propose a framework that integrates numerical random phase masks into the deconvolution process, effectively eliminating these artifacts and enhancing image clarity. The optimized joint operation of an iterative Richardson-Lucy deconvolution and numerical synthesis of random phase masks (RPM), termed as Deconv-RPM, enables a 2.5-fold reduction in full width at half-maximum (FWHM).

We demonstrate that the Deconv-RPM method significantly enhances image clarity, allowing for the discernment of previously unresolved cellular-level details in nonkeratinized epithelial cells ex vivo and moving blood cells in vivo.
Opto-Electronic Science_1
Opto-Electronic Science_2
Opto-Electronic Science_3
Reviews and Discussions
Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
Physics-informed deep learning for fringe pattern analysis
Advancing computer-generated holographic display thanks to diffraction model-driven deep nets
Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry
Deep learning enabled single-shot absolute phase recovery in high-speed composite fringe pattern profilometry of separated objects
Exceptional-point-enhanced sensing in an all-fiber bending sensor
All-optical object identification and three-dimensional reconstruction based on optical computing metasurface
Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response
Photonic integrated neuro-synaptic core for convolutional spiking neural network
Paper-based WS₂ photodetectors fabricated by all-dry techniques
Spatiotemporal hemodynamic monitoring via configurable skin-like microfiber Bragg grating group

Previous Article                                Next Article
Copyright © Hot Paper