MMM
YYYY
Effects of β-carotene on glucose metabolism dysfunction in human subjects and type 2 diabetic rats
β-胡萝卜素对人体和2型糖尿病大鼠糖代谢功能障碍的影响
ヒト被験者および2型糖尿病ラットのグルコース代謝機能障害に対するβ-カロテンの効果
인간 피험자와 제2형 당뇨병 쥐의 포도당 대사 기능 장애에 대한 β-카로틴의 효과
Efectos del β-caroteno sobre la disfunción del metabolismo de la glucosa en sujetos humanos y ratas diabéticas tipo 2
Effets du β-carotène sur le dysfonctionnement du métabolisme du glucose chez les sujets humains et les rats diabétiques de type 2
Влияние β-каротина на дисфункцию метаболизма глюкозы у людей и крыс с диабетом 2 типа
Jianjun Wu 吴建军 ¹ ², Yinan Zhou 周一楠 ³, Hanqing Hu ⁴, Dawei Yang 杨大威 ⁵, Fan Yang 杨帆 ¹ ²
¹ Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin150001, China
中国 哈尔滨 哈尔滨医科大学第二附属医院心内科
² Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, China
中国 哈尔滨 哈尔滨医科大学心肌缺血教育部重点实验室
³ Department of Digestive internal medicine, The First Affiliated Hospital of Harbin Medical University, Harbin150001, China
中国 哈尔滨 哈尔滨医科大学附属第一医院消化内科
⁴ Department of Oncology Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin150001, China
中国 哈尔滨 哈尔滨医科大学附属第二医院肿瘤外科
⁵ Department of Orthopedics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin150001, China
中国 哈尔滨 哈尔滨医科大学第四附属医院骨科
Deep Science, 17 March 2022
Abstract

Background

Type 2 diabetes mellitus (T2DM) is a common chronic disease which is strongly associated with cardiovascular risk. Long-term high blood glucose level may induce cardiomyocytes apoptosis, cardiac dysfunction and fetal cardiomyocytes proliferation. Recent epidemiological studies have shown a link between antioxidant carotenoids and type 2 diabetes, but a comprehensive longitudinal study of this link has not yet been conducted.

Methods

We included participants who had biological measurements for both serum cis-β-carotene and fasting glucose from NHANES (2001–2006). We divided participants into quartiles by the serum cis-β-carotene levels and supported this associations with glucose metabolism using multivariable regression models adjusted for confounding factors. The mechanism of β-carotene levels in regulating plasma glucose levels were further investigated in vivo and in vitro. In addtion, we have carried out a preliminary exploration of the effect of β-carotene on diabetic rat and primary cariomyocytes.

Results

We found that the higher cis-β-carotene (Q4) had a higher LDL-C level but with a lower fasting blood glucose. However, T2DM rats with β-carotene treatment showed decreased total triglycerides and LDL-c. β-carotene showed better cardiac function in DM+ group compared with diabetes groups (P<0.05). Our results also revealed that β-carotene to be an important protective factor of improving cardiac and mitochondrial function with diabetes exposure. At non-cytotoxic doses, β-carotene significantly increased glucose uptake in insulin-resistant cells. This potential effect is mediated by inducing the expression of GLUT4, the level of p-Akt and attenuating the phosphorylation of IRS-1. The analysis of gene expressions of PGC-1β and Nrf-1 showed a concordance between mitochondrial DNA content in PA-induced cardiomyocytes with or without β-carotene treatment, respectively.

Conclusion

Our results indicate that β-carotene can treat metabolic disorders by inhibition of IR
pathway in diabete.
Deep Science_1
Deep Science_2
Deep Science_3
Deep Science_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
Optical scanning endoscope via a single multimode optical fiber
Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications
A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency
Multi-wavelength nanowire micro-LEDs for future high speed optical communication
Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting
Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
Generation of lossy mode resonances (LMR) using perovskite nanofilms
Acousto-optic scanning multi-photon lithography with high printing rate
Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
Miniature tunable Airy beam optical meta-device



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper