MMM
YYYY
Enhanced amplified spontaneous emission via splitted strong coupling mode in large-area plasmonic cone lattices
大面积等离子体锥晶格中强耦合模分裂增强放大自发辐射
大面積プラズマコーン格子における強結合モード分裂増強増幅自発放射
대면적 플라스마 원추 격자 중 강한 결합 모드 분열 증강 증폭 자발적 복사
La División de modo fuertemente acoplada mejora la amplificación de la radiación espontánea en una red de cono de plasma de gran área
Forte Division de mode de couplage dans le réseau conique de plasma de grande surface amplifie le rayonnement spontané amplifié
Усиленный спонтанный выброс при помощи сильного сцепного устройства с удаленными кожухом в больших пластиковых конусах
Jiazhi Yuan 袁佳智 ¹, Jiang Hu 胡江 ¹, Yan Zheng 郑燕 ¹ ³ ⁴, Hao Wei 魏浩 ¹ ³, Jiamin Xiao 肖佳敏 ¹, Yi Wang 王祎 ¹ ², Xuchao Zhao 赵绪超 ¹, Ye Xiang 向冶 ¹, Yong Lei 雷勇 ⁴, Wenxin Wang 王文鑫 ¹ ² ⁵
¹ Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
中国 青岛 哈尔滨工程大学青岛创新发展基地
² College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
中国 哈尔滨 哈尔滨工程大学物理与光电工程学院
³ College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
中国 哈尔滨 哈尔滨工程大学材料科学与化学工程学院
⁴ Institute of Physics, Department of Mathematics and Natural Sciences, TU Ilmenau, Ilmenau 98693, Germany
⁵ College for Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
中国 长沙 国防科技大学前沿交叉学科学院
Opto-Electronic Science, 19 December 2024
Abstract

Periodic metal nanoarrays serving as cavities can support directional-tunable amplified spontaneous emission that goes beyond the diffraction limit due to the hybrid states of surface plasmons and Bloch surface waves. Most of these modes' interactions remain within the weak coupling regime, yet strong coupling is also anticipated to occur.

In this work, we present an intriguing case of amplified spontaneous emission (ASE), amplified by the splitting upper polariton mode within a strong coupling system, stemming from a square lattice of plasmonic cone lattices (PCLs). The PCLs are fabricated using an anodized aluminum oxide membrane (AAO), which facilitates strong coupling between surface plasmons and Bloch surface wave modes, with the maximum Rabi splitting observed at 0.258 eV for the sample with an aspect ratio of 0.33.

A 13.5-fold increase in amplified spontaneous emission is recorded when the emission from Nile Red coincides with this flat energy branch of upper polariton, which exhibits a high photon density of states. Reduced group velocity can prolong photon lifetime and boost the probability of light-matter interaction. The observed ASE phenomenon in this strong coupling plasmonic system widens the scope for applications in nanolasing and polariton lasing.
Opto-Electronic Science_1
Opto-Electronic Science_2
Opto-Electronic Science_3
Opto-Electronic Science_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
High-frequency enhanced ultrafast compressed active photography
On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
Ferroelectric domain engineering of lithium niobate
Smart reconfigurable metadevices made of shape memory alloy metamaterials
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
Advanced biological imaging techniques based on metasurfaces
Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper