MMM
YYYY
Manipulations of micro/nanoparticles using gigahertz acoustic streaming tweezers
使用千兆赫声流镊子处理微/纳米粒子
ギガヘルツ音響ストリーミングピンセットを使用したマイクロ/ナノ粒子の操作
기가헤르츠 음향 스트리밍 핀셋을 사용한 마이크로/나노 입자 조작
Manipulaciones de micro/nanopartículas utilizando pinzas de transmisión acústica de gigahercios
Manipulations de micro/nanoparticules à l'aide de brucelles à flux acoustique gigahertz
Манипуляции с микро/наночастицами с использованием гигагерцового акустического потокового пинцета
Hang Wu ¹, Zifan Tang ², Rui You 游睿 ¹, Shuting Pan 潘书婷 ¹, Wenpeng Liu 刘文朋 ¹, Hongxiang Zhang 张鸿翔 ¹, Tiechuan Li ¹, Yang Yang 杨洋 ¹, Chongling Sun 孙崇玲 ¹, Wei Pang 庞慰 ¹, Xuexin Duan 段学欣 ¹
¹ State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
中国 天津 天津大学精密测试技术及仪器国家重点实验室
² Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
Nanotechnology and Precision Engineering, 5 April 2022
ABSTRACT

Contactless acoustic manipulation of micro/nanoscale particles has attracted considerable attention owing to its near independence of the physical and chemical properties of the targets, making it universally applicable to almost all biological systems.

Thin-film bulk acoustic wave (BAW) resonators operating at gigahertz (GHz) frequencies have been demonstrated to generate localized high-speed microvortices through acoustic streaming effects. Benefitting from the strong drag forces of the high-speed vortices, BAW-enabled GHz acoustic streaming tweezers (AST) have been applied to the trapping and enrichment of particles ranging in size from micrometers to less than 100 nm. However, the behavior of particles in such 3D microvortex systems is still largely unknown.

In this work, the particle behavior (trapping, enrichment, and separation) in GHz AST is studied by theoretical analyses, 3D simulations, and microparticle tracking experiments. It is found that the particle motion in the vortices is determined mainly by the balance between the acoustic streaming drag force and the acoustic radiation force. This work can provide basic design principles for AST-based lab-on-a-chip systems for a variety of applications.
Nanotechnology and Precision Engineering_1
Nanotechnology and Precision Engineering_2
Nanotechnology and Precision Engineering_3
Reviews and Discussions
https://www.hotpaper.io/index.html
High-intensity spatial-mode steerable frequency up-converter toward on-chip integration
Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
Optical scanning endoscope via a single multimode optical fiber
Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications
A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency
Multi-wavelength nanowire micro-LEDs for future high speed optical communication
Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting
Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
Generation of lossy mode resonances (LMR) using perovskite nanofilms
Acousto-optic scanning multi-photon lithography with high printing rate



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper