MMM
YYYY
Timeshare surface-enhanced Raman scattering platform with sensitive and quantitative mode
具有灵敏和定量模式的时间共享表面增强拉曼散射平台
タイムシェア表面増強ラマン散乱プラットフォーム(感度と定量モードを備える)
타임셰어 표면 증강 라만 산란 플랫폼의 민감하고 정량적인 모드
Plataforma de Raman con superficie mejorada por timeshare con modo sensible y cuantitativo
Plateforme de spectroscopie Raman amplifiée en surface par part de propriété immobilière avec mode sensible et quantitatif
Платформа с чувствительным и количественным режимом для поверхностно-усиленной рамановской спектроскопии с правом использования времени
Qianqian Ding ¹ ² ³, Xueyan Chen ¹ ⁴, Yunlu Jia ¹, Hong Liu ³, Xiaochen Zhang ¹, Ningtao Cheng ⁵, Shikuan Yang ¹ ³
¹ Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
中国 杭州 浙江大学医学院附属第一医院肿瘤内科
² Institute of Micro-nano Photonic and Quantum Manipulation, School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China
中国 南京 南京理工大学微纳光子和量子调控应用研究所
³ Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
中国 杭州 浙江大学材料科学与工程学院功能复合材料与结构研究所
⁴ Inner Mongolia Metallic Materials Research Institute, Baotou 014030, China
中国 包头市 内蒙古金属材料研究所
⁵ School of Medicine, Zhejiang University, Hangzhou 310058, China
中国 杭州 浙江大学医学院
Opto-Electronic Advances, 27 January 2026
Abstract

The sensitivity and quantification capability of surface-enhanced Raman scattering (SERS) substrates are mutually exclusive, because the ultrasensitive SERS sites (hottest spots) necessary for the sensitivity will significantly magnify the SERS signals of the analyte molecules and thus each of these molecules will be miscounted to be hundreds during the quantification process.

We demonstrate a concept to circumvent the above contradiction by engineering a timeshare SERS platform capable of working at the quantitative or the sensitive mode on demand. The timeshare SERS platform was constructed by transferring a monolayer gold nanosphere film onto elastic substrates (e.g., hydrogel). The volume change of the hydrogel could adjust the inter-nanosphere distance, dynamically controlling the formation or extinction of the SERS hottest spots on the same SERS substrate without influencing the spatial distribution of the analyte molecules. The timeshare SERS platform without the SERS hottest spots showed strong quantification capability, while when equipped with a substantial number of the SERS hottest spots exhibited ultrahigh sensitivity.

We demonstrated quantitative and ultrasensitive detection of various analyte molecules using the quantitative and the sensitive mode of the timeshare SERS platform, respectively. We opened an avenue towards designing SERS substrates with both high sensitivity and strong quantification capability.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Opto-Electronic Advances_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Fiber-optic microstructured sensors based on abrupt field patterns: theory, fabrication, and applications
Integrated metasurface-freeform system enabled multi-focal planes augmented reality display
Decoding subject-invariant emotional information from cardiac signals detected by photonic sensing system
Integrated photonic synapses, neurons, memristors, and neural networks for photonic neuromorphic computing
Photoacoustic spectroscopy and light-induced thermoelastic spectroscopy based on inverted-triangular lithium niobate tuning fork
Thin-film lithium niobate-based detector: recent advances and perspectives
A review on optical torques: from engineered light fields to objects
Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
Recent advances in exciton-polariton in perovskite
Parallel all-optical encoded CDMA-driven anti-interference LiDAR for 78 MHz point acquisition
Enrichment strategies in surface-enhanced Raman scattering: theoretical insights and optical design for enhanced light-matter interaction



Next Article
About
|
Contact
|
Copyright © Hot Paper