MMM
YYYY
sys: A Privacy-preserving Scheme for Reputation-based Blockchain System
sys:一种基于信誉的区块链系统隐私保护方案
sys:評判ベースのブロックチェーンシステムのためのプライバシー保護方式
sys:신뢰 를 바탕 으로 하 는 블록 체인 시스템 의 프라이버시 보호 방안
sys: un esquema de protección de la privacidad del sistema de cadena de bloques basado en la reputación
sys: un système de protection de la vie privée basé sur la réputation du système blockchain
sys: программа защиты конфиденциальности, основанная на доверии к блочной системе
Chenyu Huang ¹, Yongjun Zhao ², Huangxun Chen ³, Xu Wang ⁴, Qian Zhang 张黔 ⁵, Yanjiao Chen 陈艳姣 ⁶, Huaxiong Wang 王华雄 ², Kwok-Yan Lam 林国恩 ²
¹ Ping An Technology, Shenzhen, China
中国 深圳 平安科技
² Nanyang Technological University, Singapore
³ Theory Lab of 2012 Labs, Huawei, Shenzhen, China
中国 深圳 华为2012实验室理论实验室
⁴ School of Computer Science, Wuhan University, Wuhan, China
中国 武汉 武汉大学计算机学院
⁵ Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong
香港 香港科技大学计算机科学与工程系
⁶ College of Electrical Engineering, Zhejiang University, Hangzhou, China
中国 杭州 浙江大学电气工程学院
IEEE Internet of Things Journal, 24 August 2021
Abstract

Reputation/Trust-based blockchain systems have attracted considerable research interests for better integrating Internet-of-Things with blockchain in terms of throughput, scalability, energy efficiency and incentive aspects. However, most existing works only consider static adversaries. Hence, they are vulnerable to slowly adaptive attackers, who can target validators with high reputation value to severely degrade the system performance. Therefore, we introduce , a privacy-preserving scheme tailored for reputation-based blockchains.

Our basic idea is to hide both the identity and reputation of the validators by periodically changing the identity and reputation commitments (i.e., aliases), which makes it much more difficult for slowly adaptive attackers to identify validators with high reputation value. To realize this idea, we utilize privacy-preserving Pedersen-commitment-based reputation updating and leader election schemes that operate on concealed reputations within an epoch.

We also introduce a privacy-preserving identity update protocol that changes the identity and time-window-based cumulative reputation commitments during each epoch transition. We have implemented and evaluated on the Amazon Web Service. The experimental results and analysis show that achieves great privacy-preserving features against slowly adaptive attacks with little overhead.
IEEE Internet of Things Journal_1
IEEE Internet of Things Journal_2
IEEE Internet of Things Journal_3
Reviews and Discussions
https://www.hotpaper.io/index.html
A review on optical torques: from engineered light fields to objects
IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
Halide perovskite volatile unipolar nanomemristor
Recent advances in exciton-polariton in perovskite
Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper