MMM
YYYY
Assessing the risk of spread of zika virus under current and future climate scenarios
评估当前和未来气候情景下寨卡病毒传播的风险
現在および将来の気候シナリオにおけるジカウイルスの蔓延のリスクの評価
현재 및 미래 기후 시나리오에서 지카 바이러스 확산 위험 평가
Evaluación del riesgo de propagación del virus del Zika en los escenarios climáticos actuales y futuros
Évaluation du risque de propagation du virus zika dans les scénarios climatiques actuels et futurs
Оценка риска распространения вируса Зика при текущих и будущих климатических сценариях
Ye Xu ¹ ², Jingni Zhou ¹ ², Tong Liu 刘通 ¹ ², Peiwen Liu 刘培文 ¹ ², Yang Wu 吴恙 ¹ ², Zetian Lai 赖泽钿 ¹ ², Jinbao Gu 顾金保 ¹ ², Xiaoguang Chen 陈晓光 ¹ ²
¹ Department of Pathogen Biology, Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou 510515, China
中国 广州 南方医科大学公共卫生学院 病原生物学系 广东省热带病研究重点实验室
² Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
中国 广州 南方医科大学公共卫生学院热带医学研究所
Biosafety and Health, 25 March 2022
Abstract

Zika virus (ZIKV) may cause severe microcephaly in newborn babies and Guillain-Barré syndrome in some adults. In recent decades, its range has expanded in 86 countries. There are two ecologically and evolutionarily district cycles: urban cycle and sylvatic cycle. This work aimed to estimate the urban and sylvatic cycle areas of ZIKV throughout the world. The occurrence records for vectors, non-human primate hosts, and ZIKV were collected.

We chose historical climate data, predicted vectors distribution, human population density, and elevation data as the variables to fit the maximum entropy model (MaxEnt). Current risk area and future prediction were performed with global climate models (GCMs) and shared socioeconomic pathways (SSPs). Predicting the ZIKV risk area would help tailor related control strategies. The results indicated that 16.6% of the world’s landmass (except Antarctica) is a risk area in the urban cycle. Approximately 6.22 billion people (78.69% of the global population) live in the risk area, with the vast majority in South Asia, tropical Africa, South America, North America, and countries around the Mediterranean Sea. Future climate change decreases the risk area of ZIKV.

This study also suggested that the sylvatic cycle happened between the Tropic of Cancer and the Tropic of Capricorn. The overlap region of the urban and sylvatic cycles could be hotpots that ZIKV spill from the sylvatic to the urban cycle. Our results indicated that long-term passenger screening, mosquito surveillance, and control are necessary.
Biosafety and Health_1
Biosafety and Health_2
Biosafety and Health_3
Biosafety and Health_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Fast source mask co-optimization method for high-NA EUV lithography
Polariton lasing in Mie-resonant perovskite nanocavity
High-Q resonant Terahertz metasurfaces
Efficient stochastic parallel gradient descent training for on-chip optical processor
High-intensity spatial-mode steerable frequency up-converter toward on-chip integration
Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
Optical scanning endoscope via a single multimode optical fiber
Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications
A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency
Multi-wavelength nanowire micro-LEDs for future high speed optical communication
Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper