MMM
YYYY
Context-Aware Candidates for Image Cropping
图像裁剪的上下文感知候选
画像トリミングのコンテキスト感知候補
그림 재단 의 상하 문 감지 후보
Candidatos sensibles al contexto para el recorte de imágenes
Candidats sensibles au contexte pour la culture d'images
выбор контекстного изображения 
Tianpei Lian 连天培 ¹, Zhiguo Cao 曹治国 ¹, Ke Xian 鲜可 ¹, Zhiyu Pan ¹, Weicai Zhong ²
¹ School of Artificial Intelligence and Automation, Huazhong University of Science and Technology
华中科技大学 人工智能与自动化学院
² Huawei CBG Consumer Cloud Service
华为CBG消费者云服务
2021 IEEE International Conference on Image Processing (ICIP), 23 August 2021
Abstract

Image cropping aims to enhance the aesthetic quality of a given image by removing unwanted areas. Existing image cropping methods can be divided into two groups: candidate-based and candidate-free methods. For candidate-based methods, dense predefined candidate boxes can indeed cover good boxes, but most candidates with low aesthetic quality may disturb the following judgment and lead to an undesirable result. For candidate-free methods, the cropping box is directly acquired according to certain prior knowledge.

However, the effect of only one box is not stable enough due to the subjectivity of image cropping. In order to combine the advantages of the above methods and overcome these shortcomings, we need fewer but more representative candidate boxes. To this end, we propose FCRNet, a fully convolutional regression network, which predicts several context-aware cropping boxes in an ensemble manner as candidates.

A multi-task loss is employed to supervise the generation of candidates. Unlike previous candidate-based works, FCRNet outputs a small number of context-aware candidates without any predefined box and the final result is selected from these candidates by an aesthetic evaluation network or even manual selection. Extensive experiments show the superiority of our context-aware candidates based method over the state-of-the-art approaches.
2021 IEEE International Conference on Image Processing (ICIP)_1
2021 IEEE International Conference on Image Processing (ICIP)_2
2021 IEEE International Conference on Image Processing (ICIP)_3
2021 IEEE International Conference on Image Processing (ICIP)_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Photoacoustic spectroscopy and light-induced thermoelastic spectroscopy based on inverted-triangular lithium niobate tuning fork
Thin-film lithium niobate-based detector: recent advances and perspectives
In-situ and ex-situ twisted bilayer liquid crystal computing platform for reconfigurable image processing
Highly textured single-crystal-like perovskite films for large-area, high-performance photodiodes
Robust performance of PTQ10:DTY6 in halogen-free photovoltaics across deposition techniques and configurations for industrial scale-up
Surpassing the diffraction limit in long-range laser engineering via cross-scale vectorial optical field manipulation: perspectives and outlooks
Spatiotemporal multiplexed photonic reservoir computing: parallel prediction for the high-dimensional dynamics of complex semiconductor laser network
Filament based ionizing radiation sensing
Separation and identification of mixed signal for distributed acoustic sensor using deep learning
Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
Partially coherent optical chip enables physical-layer public-key encryption
Advanced applications of pulsed laser deposition in electrocatalysts for hydrogen-electric conversion systems



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper