Exciton-polariton based WS2 polarization modulator controlled by optical Stark beam
由 Stark 光束控制的基于激子极化子的 WS2 偏振调制器
광학 Stark 빔에 의해 제어되는 여기자-편광 기반 WS2 편광 변조기
Modulador de polarización WS2 basado en polaritón de excitón controlado por haz óptico Stark
Modulateur de polarisation WS2 basé sur l'exciton-polariton contrôlé par un faisceau Stark optique
Модулятор поляризации WS2 на основе экситона-поляритона, управляемый оптическим штарковским лучом
Mahnoor Shahzadi ¹, Chuyuan Zheng 郑楚媛 ¹, Sheraz Ahmad ², Shanshan Wang 王珊珊 ¹, Weili Zhang 张伟利 ¹
¹ School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
中国 成都 电子科技大学信息与通信工程学院
² College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China
中国 北京 中国石油大学(北京)石油工程学院
Opto-Electronic Advances, 31 March 2022

The recent era of fast optical manipulation and optical devices owe a lot to exciton-polaritons being lighter in mass, faster in speed and stronger in nonlinearity due to hybrid light-matter characteristics. The room temperature existence of polaritons in two dimensional materials opens up new avenues to the design and analysis of all optical devices and has gained the researchers attention.

Here, spin-selective optical Stark effect is introduced to form a waveguide effect in uniform community of polaritons, and is used to realize polarization modulation of polaritons. The proposed device basically takes advantage of the spin-sensitive properties of optical Stark effect of polaritons inside the WS2 microcavity so as to guide different modes and modulate polarization of polaritons.

It is shown that polaritonic wavepacket of different mode profiles can be generated by changing intensity of the optical Stark beam and the polarization of polaritons can be controlled and changed periodically along the formed waveguide by introduction birefringence that is sensitive to polarization degree of the optical Stark beam.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Reviews and Discussions
High-speed visible light communication based on micro-LED: A technology with wide applications in next generation communication
Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays
Comparative analysis of NovaSeq 6000 and MGISEQ 2000 single-cell RNA sequencing data
Integrated liver proteomics and metabolomics identify metabolic pathways affected by pantothenic acid deficiency in Pekin ducks
Photo-processing of perovskites: current research status and challenges
Influence of N-doping on dielectric properties of carbon-coated copper nanocomposites in the microwave and terahertz ranges
Towards integrated mode-division demultiplexing spectrometer by deep learning
Discovery of novel aspartate derivatives as highly potent and selective FXIa inhibitors
Large-scale and high-quality III-nitride membranes through microcavity-assisted crack propagation by engineering tensile-stressed Ni layers
Metasurface-based nanoprinting: principle, design and advances
All-optical logic gate computing for high-speed parallel information processing
100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution

Previous Article                                Next Article
Copyright © Hot Paper