MMM
YYYY
Femtosecond laser micro/nano-processing via multiple pulses incubation
通过多脉冲孵化的飞秒激光微纳加工
フェムト秒レーザーによる複数パルスインキュベーションを用いたマイクロ/ナノ加工
펨토초 레이저 다중 펄스 배양을 통한 마이크로/나노 가공
Micro/nanoprocésamiento con láser de femtosegundos mediante incubación de múltiples pulsos
Micro/nano-usinage par laser femtoseconde via incubation multi-pulsations
Фемтосекундная лазерная микро/нанообработка с инкубацией множественных импульсов
Jingbo Yin ¹ ², Zhenyuan Lin ³, Lingfei Ji ³, Minghui Hong ¹ ² ⁴
¹ Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
中国 厦门 厦门大学萨本栋微米纳米科学技术研究院
² Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, China
中国 厦门 厦门大学智能仪器与设备专业
³ School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
中国 北京 北京工业大学物理与光电子工程学院
⁴ Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
中国 厦门 福建能源材料科学与技术创新实验室(“嘉庚创新实验室”)
Opto-Electronic Technology, 18 September 2025
Abstract

As a flexible and efficient non-contact processing strategy in ambient air, femtosecond laser precision engineering has become an advanced technology for micro/nano-structure fabrication. Femtosecond laser can output ultrashort laser pulses at a very high repetition rate, ensuring higher machining accuracy and improving the machining efficiency.

The femtosecond laser manufacturing is mostly processed under multiple pulses irradiation. At a high repetition rate, incubation effect based on the multiple pulses irradiation provides a new theoretical and technical support to realize precision manufacturing. Herein, a systematic review is conducted on the influence of laser repetition rate spanning from kHz to GHz.

The physical mechanisms of three incubation modes, namely defects accumulation (kHz), heat accumulation (MHz), and plasma interaction (GHz), are summarized. The latest progress including micro/nano-structuring, nanostructure synthesis, three-dimensional functional structures fabrication and cross-scale precision engineering is explored. Furthermore, the prospect and challenge of the high-repetition-rate femtosecond laser processing in research frontiers and industrial applications are discussed.
Opto-Electronic Technology_1
Opto-Electronic Technology_2
Opto-Electronic Technology_3
Opto-Electronic Technology_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Recent advances in exciton-polariton in perovskite
Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
Dynamic spatial beam shaping for ultrafast laser processing: a review
Aberration-corrected differential phase contrast microscopy with annular illuminations
Meta-lens digital image correlation
Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection
Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
Review for wireless communication technology based on digital encoding metasurfaces



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper