MMM
YYYY
Field distribution of the Z₂ topological edge state revealed by cathodoluminescence nanoscopy
阴极发光纳米技术揭示的 Z₂ 拓扑边缘态的场分布
カソードルミネッセンスナノスコピーによって明らかにされたZ²トポロジカルエッジ状態のフィールド分布
음극 발광 나노스코피로 밝혀진 Z₂ 위상 에지 상태의 필드 분포
Distribución de campo del estado de borde topológico Z₂ revelado por nanoscopia de catodoluminiscencia
Distribution de champ de l'état de bord topologique Z₂ révélé par nanoscopie à cathodoluminescence
Распределение поля топологического краевого состояния Z₂, выявленное с помощью катодолюминесцентной наноскопии
Xiao He 何霄 ¹, Donglin Liu 刘冬林 ¹, Hongfei Wang 王洪飞 ², Liheng Zheng 郑立恒 ¹, Bo Xu 徐波 ³, Biye Xie 解碧野 ² ⁴, Meiling Jiang 姜美玲 ¹, Zhixin Liu 刘志鑫 ¹, Jin Zhang 张锦 ³, Minghui Lu 卢明辉 ², Zheyu Fang 方哲宇 ¹
¹ School of Physics, State Key Lab for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University Yangtze Delta Institute of Optoelectronics, Peking University, Beijing 100871, China
中国 北京 北京大学物理学院 人工微结构和介观物理国家重点实验室 前沿交叉学科研究院 量子物质科学协同创新中心 纳光电子前沿科学中心 北京大学长三角光电科学研究院
² National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
中国 南京 南京大学材料科学与工程系 固体微结构物理国家重点实验室
³ College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
中国 北京 北京大学化学与分子工程学院
⁴ Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, the University of Hong Kong, Pokfulam Road, Hong Kong, China
香港大学物理系 香港大学-UCAS理论与计算物理联合研究所
Opto-Electronic Advances, 25 April 2022
Abstract

Photonic topological insulators with robust boundary states can enable great applications for optical communication and quantum emission, such as unidirectional waveguide and single-mode laser. However, because of the diffraction limit of light, the physical insight of topological resonance remains unexplored in detail, like the dark line that exists with the crystalline symmetry-protected topological edge state.

Here, we experimentally observe the dark line of the Z₂ photonic topological insulator in the visible range by photoluminescence and specify its location by cathodoluminescence characterization, and elucidate its mechanism with the p-d orbital electromagnetic field distribution which calculated by numerical simulation. Our investigation provides a deeper understanding of Z₂ topological edge states and may have great significance to the design of future on-chip topological devices.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Reviews and Discussions
https://www.hotpaper.io/index.html
High-intensity spatial-mode steerable frequency up-converter toward on-chip integration
Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
Optical scanning endoscope via a single multimode optical fiber
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
Data-driven polarimetric imaging: a review
Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
Flat soliton microcomb source
Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper