High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses
GHz 돌발 모드 비초 펄스 레이저를 이용하여 플라즈마 보조 부식(LIPAA)을 유도하여 사파이어의 고성능 미세 가공을 실현한다
Microprocesamiento de alto rendimiento de zafiro mediante ablación asistida por plasma inducida por láser de pulso Femtosegundo en modo de explosión de GHz (lipaa)
Micro - usinage haute performance du saphir avec ablation assistée par plasma induite par laser pulsé femtoseconde en mode rafale GHz (lipaa)
Высокопроизводительная микрообработка сапфира с помощью импульсного лазера, индуцированного в фемтосекундном режиме вспышки ГГц (LIPAA)
Kotaro Obata ¹, Shota Kawabata ¹ ², Yasutaka Hanada ¹ ³, Godai Miyaji ², Koji Sugioka ¹
¹ RIKEN Center for Advanced Photonics (RAP), Wako-shi, Saitama 351-0198, Japan
² Faculty of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
³ Graduate school of science and technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
Opto-Electronic Science, 24 June 2024

GHz burst-mode femtosecond (fs) laser, which emits a series of pulse trains with extremely short intervals of several hundred picoseconds, provides distinct characteristics in materials processing as compared with the conventional irradiation scheme of fs laser (single-pulse mode). In this paper, we take advantage of the moderate pulse interval of 205 ps (4.88 GHz) in the burst pulse for high-quality and high-efficiency micromachining of single crystalline sapphire by laser induced plasma assisted ablation (LIPAA).

Specifically, the preceding pulses in the burst generate plasma by ablation of copper placed behind the sapphire substrate, which interacts with the subsequent pulses to induce ablation at the rear surface of sapphire substrates. As a result, not only the ablation quality but also the ablation efficiency and the fabrication resolution are greatly improved compared to the other schemes including single-pulse mode fs laser direct ablation, single-pulse mode fs-LIPAA, and nanosecond-LIPAA.
Opto-Electronic Science_1
Opto-Electronic Science_2
Opto-Electronic Science_3
Reviews and Discussions
Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots
Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution
NIR-triggered on-site NO/ROS/RNS nanoreactor: Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation
Charge collection narrowing mechanism in electronic-grade-diamond photodetectors
Resonantly enhanced second- and third-harmonic generation in dielectric nonlinear metasurfaces
Liquid crystal-integrated metasurfaces for an active photonic platform
Fast source mask co-optimization method for high-NA EUV lithography
Polariton lasing in Mie-resonant perovskite nanocavity
High-Q resonant Terahertz metasurfaces
Efficient stochastic parallel gradient descent training for on-chip optical processor
Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications
A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency

Previous Article                                Next Article
Copyright © Hot Paper