Liquid crystal-integrated metasurfaces for an active photonic platform
用于有源光子平台的液晶集成超表面
アクティブフォトニックプラットフォーム用液晶集積超表面
액정 통합 하이퍼서피스를 위한 소스 광 하위 플랫폼용
Supersuperficies integradas de cristal líquido para plataformas fotónicas activas
Super surface intégrée à cristaux liquides pour plateformes photoniques actives
Жидкокристаллическая интегрированная суперповерхность для активных фотонных платформ
Dohyun Kang ¹, Hyeonsu Heo ¹, Younghwan Yang ¹, Junhwa Seong ¹, Hongyoon Kim ¹, Joohoon Kim ¹, Junsuk Rho ¹ ² ³ ⁴ ⁵
¹ Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
² Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
³ Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 36763, Republic of Korea
⁴ POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
⁵ National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures. However, metasurfaces typically have static optical responses with fixed geometries of nanostructures, which poses challenges for implementing transition to technology by replacing conventional optical components.
To solve this problem, liquid crystals (LCs) have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time. Here, we review recent studies on LC-powered tunable metasurfaces, which are categorized as wavefront tuning and spectral tuning. Compared to numerous reviews on tunable metasurfaces, this review intensively explores recent development of LC-integrated metasurfaces.
At the end of this review, we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs. We hope that this review will accelerate the development of new and innovative LC-powered devices.