MMM
YYYY
Non-volatile reconfigurable planar lightwave circuit splitter enabled by laser-directed Sb2S3 phase transitions
基于激光诱导Sb2S3相变的非易失性可重构平面光波电路分光器
レーザー指向Sb2S3相転移によって実現された非揮発性再構成可能平面光ウェーブ回路スプリッタ
레이저 주도 Sb2S3 상전이에 의해 구현된 비휘발성 재구성 가능 평면 광회로 분배기
Divisor de circuitos de ondas de luz planos reconfigurables no volátiles habilitado por transiciones de fase de Sb2S3 dirigidas por láser
Répartiteur de circuit optique planaire reconfigurable et non volatil, rendu possible par les transitions de phase Sb2S3 dirigées par laser
Немонотонный перестраиваемый планарный оптический делитель, реализованный с помощью лазерно-направленных фазовых переходов Sb2S3
Shixin Gao 高仕鑫 ¹, Tun Cao 曹暾 ¹, Haonan Ren 任浩楠 ¹, Jingzhe Pang 庞景哲 ¹, Ran Chen 陈燃 ¹, Yang Ren 任杨 ³, Zhenqing Zhao 赵真清 ⁴, Xiaoming Chen 陈晓明 ¹, Dongming Guo 郭东明 ²
¹ School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
中国 大连 大连理工大学光电工程与仪器科学学院
² Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
中国 大连 大连理工大学精密与特种加工教育部重点实验室
³ Huawei Technologies, B & P Laboratory, Shenzhen 518000, China
中国 深圳 华为技术有限公司,B & P实验室
⁴ Huawei Technologies, Optical R & D Dept. Dongguan 523808, China
中国 东莞 华为技术有限公司,光学研发部
Opto-Electronic Technology, 18 July 2025
Abstract

Planar lightwave circuit (PLC) splitters have long been foundational components in passive optical communication networks, achieving commercial success since the 1990s. However, their inherent fixed splitting ratios impose significant limitations on capacity expansion, often requiring physical replacement and causing service disruptions.

Thermally tunable optical splitters address this challenge by enabling adjustable splitting ratios, but their operation is contingent upon a continuous power supply and complex driving systems. In this work, we present a novel, non-volatile tunable PLC platform based on Sb2S3 phase-change materials. The proposed device, which incorporates a Mach-Zehnder interferometer (MZI) optical switch structure, offers tunable splitting ratios via laser-direct writing or ohmic heating, providing flexible reconfiguration capabilities.

Experimental results demonstrate non-volatile power splitting ranging from 50∶50 to 20∶80, with a modest increase of approximately 1 dB in additional loss. This work highlights the potential of the proposed platform for low-power, high-efficiency, and reconfigurable photonic networks.
Opto-Electronic Technology_1
Opto-Electronic Technology_2
Opto-Electronic Technology_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
Dynamic spatial beam shaping for ultrafast laser processing: a review
Aberration-corrected differential phase contrast microscopy with annular illuminations
Meta-lens digital image correlation
Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection
Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
Review for wireless communication technology based on digital encoding metasurfaces
Coulomb attraction driven spontaneous molecule-hotspot paring enables universal, fast, and large-scale uniform single-molecule Raman spectroscopy



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper