基于激光诱导Sb2S3相变的非易失性可重构平面光波电路分光器
レーザー指向Sb2S3相転移によって実現された非揮発性再構成可能平面光ウェーブ回路スプリッタ
레이저 주도 Sb2S3 상전이에 의해 구현된 비휘발성 재구성 가능 평면 광회로 분배기
Divisor de circuitos de ondas de luz planos reconfigurables no volátiles habilitado por transiciones de fase de Sb2S3 dirigidas por láser
Répartiteur de circuit optique planaire reconfigurable et non volatil, rendu possible par les transitions de phase Sb2S3 dirigées par laser
Немонотонный перестраиваемый планарный оптический делитель, реализованный с помощью лазерно-направленных фазовых переходов Sb2S3
Shixin Gao ¹, Tun Cao ¹, Haonan Ren ¹, Jingzhe Pang ¹, Ran Chen ¹, Yang Ren ³, Zhenqing Zhao ⁴, Xiaoming Chen ¹, Dongming Guo ²
¹ School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
中国 大连 大连理工大学光电工程与仪器科学学院
² Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
中国 大连 大连理工大学精密与特种加工教育部重点实验室
³ Huawei Technologies, B & P Laboratory, Shenzhen 518000, China
中国 深圳 华为技术有限公司,B & P实验室
⁴ Huawei Technologies, Optical R & D Dept. Dongguan 523808, China
中国 东莞 华为技术有限公司,光学研发部
Planar lightwave circuit (PLC) splitters have long been foundational components in passive optical communication networks, achieving commercial success since the 1990s. However, their inherent fixed splitting ratios impose significant limitations on capacity expansion, often requiring physical replacement and causing service disruptions.
Thermally tunable optical splitters address this challenge by enabling adjustable splitting ratios, but their operation is contingent upon a continuous power supply and complex driving systems. In this work, we present a novel, non-volatile tunable PLC platform based on Sb2S3 phase-change materials. The proposed device, which incorporates a Mach-Zehnder interferometer (MZI) optical switch structure, offers tunable splitting ratios via laser-direct writing or ohmic heating, providing flexible reconfiguration capabilities.
Experimental results demonstrate non-volatile power splitting ranging from 50∶50 to 20∶80, with a modest increase of approximately 1 dB in additional loss. This work highlights the potential of the proposed platform for low-power, high-efficiency, and reconfigurable photonic networks.