High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications
차세대 광통신을 위한 고속 다파장 InGaAs/InP 퀀텀 트랩 나노선 어레이 마이크로LED
InGaAs / INP Quantum well nanowire Array micro LED de alta velocidad y multilongitud de onda para comunicaciones ópticas de próxima generación
Micro LED à matrice de Nanofils à puits quantiques InGaAs / InP Multi - longueurs d'onde haute vitesse pour les communications optiques de nouvelle génération
Высокоскоростные многоволновые антенны InGaAs / InP для оптической связи следующего поколения
Fanlu Zhang 张钒璐 ¹, Zhicheng Su 苏志诚 ¹ ², Zhe Li 李哲 ¹, Yi Zhu 朱毅 ¹, Nikita Gagrani ¹, Ziyuan Li 李子园 ¹, Mark Lockrey ³, Li Li 李丽 ⁴, Igor Aharonovich ⁵, Yuerui Lu 卢曰瑞 ⁶, Hark Hoe Tan ¹, Chennupati Jagadish ¹, Lan Fu 傅岚 ¹
¹ Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
² School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
中国 南京 东南大学电子科学与工程学院
³ Microstructural Analysis Unit, University of Technology Sydney, Sydney NSW 2007, Australia
⁴ Australian National Fabrication Facility ACT Node, Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
⁵ ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Sydney NSW 2007, Australia
⁶ School of Engineering, College of Engineering and Computer Science, The Australia National University, Canberra, Canberra ACT 2601, Australia
Opto-Electronic Science, 28 July 2023

Miniaturized light sources at telecommunication wavelengths are essential components for on-chip optical communication systems. Here, we report the growth and fabrication of highly uniform p-i-n core-shell InGaAs/InP single quantum well (QW) nanowire array light emitting diodes (LEDs) with multi-wavelength and high-speed operations.

Two-dimensional cathodoluminescence mapping reveals that axial and radial QWs in the nanowire structure contribute to strong emission at the wavelength of ~1.35 and ~1.55 μm, respectively, ideal for low-loss optical communications. As a result of simultaneous contributions from both axial and radial QWs, broadband electroluminescence emission with a linewidth of 286 nm is achieved with a peak power of ~17 μW.

A large spectral blueshift is observed with the increase of applied bias, which is ascribed to the band-filling effect based on device simulation, and enables voltage tunable multi-wavelength operation at the telecommunication wavelength range. Multi-wavelength operation is also achieved by fabricating nanowire array LEDs with different pitch sizes on the same substrate, leading to QW formation with different emission wavelengths.

Furthermore, high-speed GHz-level modulation and small pixel size LED are demonstrated, showing the promise for ultrafast operation and ultracompact integration. The voltage and pitch size controlled multi-wavelength high-speed nanowire array LED presents a compact and efficient scheme for developing high-performance nanoscale light sources for future optical communication applications.
Opto-Electronic Science_1
Opto-Electronic Science_2
Opto-Electronic Science_3
Opto-Electronic Science_4
Reviews and Discussions
Recent developments in deep-ultraviolet sterilization of human respiratory RNA viruses
Broadband and continuous wave pumped second-harmonic generation from microfiber coated with layered GaSe crystal
ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection
Rapid inactivation of human respiratory RNA viruses by deep ultraviolet irradiation from light-emitting diodes on a high-temperature-annealed AlN/Sapphire template
Deep-ultraviolet photonics for the disinfection of SARS-CoV-2 and its variants (Delta and Omicron) in the cryogenic environment
Planar peristrophic multiplexing metasurfaces
Advancing nonlinear nanophotonics: harnessing membrane metasurfaces for third-harmonic generation and imaging
Direct field-to-pattern monolithic design of holographic metasurface via residual encoder-decoder convolutional neural network
A novel method for designing crosstalk-free achromatic full Stokes imaging polarimeter
Third-harmonic generation and imaging with resonant Si membrane metasurface
Speckle structured illumination endoscopy with enhanced resolution at wide field of view and depth of field
All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet

Previous Article                                Next Article
Copyright © Hot Paper