Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
通过合成波三维金属透镜成像提高抗散射超分辨率无标记显微镜的时空分辨率
合成波三次元金属レンズイメージングによる耐散乱超分解能非標識顕微鏡の時空分解能向上
합성파 3차원 금속 렌즈 영상을 통해 산란 방지 초해상도 무표시 현미경의 시공 해상도를 높인다
Mejorar la resolución espacio - temporal del microscopio anti - dispersión y súper resolución sin etiqueta a través de imágenes de lentes metálicas tridimensionales de ondas sintéticas
Améliorer la résolution spatio - temporelle des microscopes non marqués à super résolution anti - diffusion grâce à l'imagerie par lentille métallique tridimensionnelle à ondes synthétiques
Повышение пространственно - временного разрешения антирассеивающих сверхразрешений с помощью трехмерных металлических линз с синтетическими волнами
¹ National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光电技术研究所光场调控科学技术全国重点实验室
² State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光电技术研究所 微细加工光学技术国家重点实验室
³ Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光电技术研究所 矢量光场研究中心
⁴ School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学光电学院
Super-resolution (SR) microscopy has dramatically enhanced our understanding of biological processes. However, scattering media in thick specimens severely limits the spatial resolution, often rendering the images unclear or indistinguishable. Additionally, live-cell imaging faces challenges in achieving high temporal resolution for fast-moving subcellular structures.
Here, we present the principles of a synthetic wave microscopy (SWM) to extract three-dimensional information from thick unlabeled specimens, where photobleaching and phototoxicity are avoided. SWM exploits multiple-wave interferometry to reveal the specimen’s phase information in the area of interest, which is not affected by the scattering media in the optical path. SWM achieves ~0.42 λ/NA resolution at an imaging speed of up to 106 pixels/s. SWM proves better temporal resolution and sensitivity than the most conventional microscopes currently available while maintaining exceptional SR and anti-scattering capabilities.
Penetrating through the scattering media is challenging for conventional imaging techniques. Remarkably, SWM retains its efficacy even in conditions of low signal-to-noise ratios. It facilitates the visualization of dynamic subcellular structures in live cells, encompassing tubular endoplasmic reticulum (ER), lipid droplets, mitochondria, and lysosomes.