Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
材料各向异性的逆设计及其在紧凑型X-cut TFLN片上波长解复用器中的应用
材料異方性の逆設計及びコンパクトX-cut TFLNチップ上の波長デマルチプレクサへの応用
컴팩트형 X-cut TFLN 슬라이스의 파장 분해 재사용기에 적용되는 재료의 역방향 이성 설계
Diseño inverso de la heterogeneidad del material y su aplicación en el demultivador de longitud de onda en la placa compacta X - cut tfln
Conception inverse de l'anisotropie des matériaux et son application dans un démultiplexeur de longueur d'onde sur une feuille compacte X - cut tfln
Обратная конструкция анизотропии материала и ее применение в компактном устройстве для решения длины волны на пластине X - cut TFLN
Jiangbo Lyu 吕江泊 ¹ ², Tao Zhu 朱涛 ¹ ², Yan Zhou 周延 ¹, Zhenmin Chen 陈震旻 ¹, Yazhi Pi 皮雅稚 ¹, Zhengtong Liu 刘政通 ¹, Xiaochuan Xu 徐小川 ², Ke Xu 徐科 ², Xu Ma 马旭 ³, Lei Wang 王磊 ¹, Zizheng Cao 曹子峥 ¹, Shaohua Yu 余少华 ¹
¹ Peng Cheng Laboratory, Shenzhen 518055, China
中国 深圳 鹏城实验室
² Department of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
中国 深圳 哈尔滨工业大学(深圳)电子与信息工程学院
³ Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
中国 北京 北京理工大学光电学院 光电成像技术与系统教育部重点实验室
Opto-Electronic Science, 9 January 2024

Inverse design focuses on identifying photonic structures to optimize the performance of photonic devices. Conventional scalar-based inverse design approaches are insufficient to design photonic devices of anisotropic materials such as lithium niobate (LN). To the best of our knowledge, this work proposes for the first time the inverse design method for anisotropic materials to optimize the structure of anisotropic-material based photonics devices.

Specifically, the orientation dependent properties of anisotropic materials are included in the adjoint method, which provides a more precise prediction of light propagation within such materials. The proposed method is used to design ultra-compact wavelength division demultiplexers in the X-cut thin-film lithium niobate (TFLN) platform.

By benchmarking the device performances of our method with those of classical scalar-based inverse design, we demonstrate that this method properly addresses the critical issue of material anisotropy in the X-cut TFLN platform.

This proposed method fills the gap of inverse design of anisotropic materials based photonic devices, which finds prominent applications in TFLN platforms and other anisotropic-material based photonic integration platforms.
Opto-Electronic Science_1
Opto-Electronic Science_2
Opto-Electronic Science_3
Opto-Electronic Science_4
Reviews and Discussions
Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
Physics-informed deep learning for fringe pattern analysis
Advancing computer-generated holographic display thanks to diffraction model-driven deep nets
Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry
Deep learning enabled single-shot absolute phase recovery in high-speed composite fringe pattern profilometry of separated objects
Exceptional-point-enhanced sensing in an all-fiber bending sensor
All-optical object identification and three-dimensional reconstruction based on optical computing metasurface
Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response
Photonic integrated neuro-synaptic core for convolutional spiking neural network
Paper-based WS₂ photodetectors fabricated by all-dry techniques
Spatiotemporal hemodynamic monitoring via configurable skin-like microfiber Bragg grating group

Previous Article                                Next Article
Copyright © Hot Paper