Laser direct writing of Ga₂O₃/liquid metal-based flexible humidity sensors
갈륨 레이저 직접 쓰기Ga₂O₃/액체 금속 기반 유연 습도 센서
Escritura directa láser de Ga₂O₃/ Sensores flexibles de humedad basados en metales líquidos
écriture directe laser du Ga₂O₃/ Capteur d'humidité flexible à base de métal liquide
Лазерная запись Ga₂O₃/ Гибкий датчик влажности на основе жидких металлов
Songya Cui 崔颂雅 ¹ ², Yuyao Lu 陆雨姚 ¹, Depeng Kong 孔德朋 ¹, Huayu Luo 罗华昱 ¹, Liang Peng 彭亮 ², Geng Yang 杨赓 ¹, Huayong Yang 杨华勇 ¹, Kaichen Xu 徐凯臣 ¹
¹ State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310030, China
中国 杭州 浙江大学机械工程学院 流体动力与机电系统国家重点实验室
² School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
中国 杭州 浙大城市学院 信息与电气工程学院
Opto-Electronic Advances, 20 July 2023

Flexible and wearable humidity sensors play a vital role in daily point-of-care diagnosis and noncontact human-machine interactions. However, achieving a facile and high-speed fabrication approach to realizing flexible humidity sensors remains a challenge. In this work, a wearable capacitive-type Ga₂O₃/liquid metal-based humidity sensor is demonstrated by a one-step laser direct writing technique.

Owing to the photothermal effect of laser, the Ga₂O₃-wrapped liquid metal particles can be selectively sintered and converted from insulative to conductive traces with a resistivity of 0.19 Ω·cm, while the untreated regions serve as active sensing layers in response to moisture changes. Under 95% relative humidity, the humidity sensor displays a highly stable performance along with rapid response and recover time.

Utilizing these superior properties, the Ga₂O₃/liquid metal-based humidity sensor is able to monitor human respiration rate, as well as skin moisture of the palm under different physiological states for healthcare monitoring.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Reviews and Discussions
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
Optical scanning endoscope via a single multimode optical fiber
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
Data-driven polarimetric imaging: a review
Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
Flat soliton microcomb source
Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection
Applications of lasers: A promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays
Light-stimulated adaptive artificial synapse based on nanocrystalline metal-oxide film

Previous Article                                Next Article
Copyright © Hot Paper