MMM
YYYY
Litterfall seasonality and adaptive strategies of tropical and subtropical evergreen forests in China
中国热带和亚热带常绿林的凋落物季节性及适应策略
中国の熱帯および亜熱帯常緑樹林の落葉季節性と適応戦略
중국 열대 및 아열대 상록수림의 낙엽 계절성과 적응 전략
Estacionalidad de la caída de la basura y estrategias de adaptación de los bosques siempreverdes tropicales y subtropicales en China
Saisonnalité des chutes de litière et stratégies d'adaptation des forêts tropicales et subtropicales sempervirentes en Chine
Сезонность опада и стратегии адаптации вечнозеленых тропических и субтропических лесов Китая
Yuhang Dai ¹ ², Fanxi Gong ² ³ ⁴, Xueqin Yang ² ⁴, Xiuzhi Chen 陈修治 ² ⁵, Yongxian Su 苏泳娴 ⁴, Liyang Liu 刘礼杨 ⁴, Jianping Wu 吴建平 ⁴, Xiaodong Liu 刘效东 ¹, Qingling Sun 孙庆龄 ² ⁴
¹ College of forestry and landscape architecture, South China Agricultural University, Guangzhou, China
中国 广州 华南农业大学林学与风景园林学院
² Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, China
中国 珠海 中山大学大气科学学院广东省气候变化与自然灾害研究重点实验室
³ College of Earth Sciences, Chengdu University of Technology, Chengdu, China
中国 成都 成都理工大学地球科学学院
⁴ Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, China
中国 广州 广东省科学院广州地理研究所 广东省地理空间信息技术与应用公共实验室 广东省遥感与地理信息系统应用重点实验室
⁵ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
中国 珠海 南方海洋科学与工程广东省实验室(珠海)
Journal of Plant Ecology, 27 August 2021
Aims

Tropical and subtropical evergreen broad-leaved forests (EBF) and needle-leaved forests (ENF) in China exhibit complex leaf shedding strategies in responses to soil water availability, vapor pressure deficits (VPD) and sunlight availability. However, the seasonal variations and triggers of litterfall differ significantly in tropical/subtropical forests, and there are still many uncertainties. Herein, we aim to explore the distinct climatic factors of seasonal litterfall in a climate-phenology correlation framework.

Methods

We collected seasonal litterfall data from 85 sites across tropical/subtropical China and used linear correlation coefficients between sunlight and rainfall to partition synchronous/asynchronous climates. Additional phase analysis and structural equation model analysis were conducted to model the climatic triggers of tropical phenology.

Important Findings

Results indicated two types of tropical litterfall phenology under two types of climates. In synchronous climates, where seasonal sunlight and rainfall are positively correlated, the litterfall peak of the unimodal phenology and the first litterfall peak of the bimodal phenology both happen at the end of dry season. The second litterfall peak of the bimodal phenology occurs at the end of rainy season due to water stress. In asynchronous climates, where seasonal sunlight and rainfall are negatively correlated, VPD shows consistent seasonal variations with incoming sunlight. The leaf senescence is accelerated at the end of dry season by higher VPD; while soil water deficit is in anti-phase with sunlight and mainly controls the second litterfall peak of the bimodal phenology in EBF. Our findings provide an important reference for modeling tropical phenology in Earth system models.
Journal of Plant Ecology_1
Journal of Plant Ecology_2
Journal of Plant Ecology_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Eco-friendly quantum-dot light-emitting diode display technologies: prospects and challenges
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
Observation of polaronic state assisted sub-bandgap saturable absorption
Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem
Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization
Cascaded metasurfaces for adaptive aberration correction
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
Spectrally extended line field optical coherence tomography angiography
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
Integrated photonic polarizers with 2D reduced graphene oxide
Tip-enhanced Raman scattering of glucose molecules
Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper