Metasurface-based nanoprinting: principle, design and advances
초표면 기반 나노 인쇄: 원리, 설계 및 진전
Nanoimpresión basada en supersuperficies: principios, diseño y desarrollo
Nano - Printing Based on supersurface: Principles, Design and Progress
нанопечатание на основе надповерхности: принципы, дизайн и прогресс
Rao Fu 付娆 ¹, Kuixian Chen 陈奎先 ¹, Zile Li 李子乐 ¹ ², Shaohua Yu 余少华 ², Guoxing Zheng 郑国兴 ¹ ² ³ ⁴
¹ School of Electronic Information and School of Microelectronics, Wuhan University, Wuhan 430072, China
中国 武汉 武汉大学 电子信息学院 微电子学院
² Peng Cheng Laboratory, Shenzhen 518055, China
中国 深圳 鹏城实验室
³ Wuhan Institute of Quantum Technology, Wuhan 430206, China
中国 武汉 武汉量子技术研究院
⁴ Hubei Luojia Laboratory, Wuhan 430079, China
中国 武汉 湖北珞珈实验室
Opto-Electronic Science, 28 October 2022

Metasurface-based nanoprinting (meta-nanoprinting) has fully demonstrated its advantages in ultrahigh-density grayscale/color image recording and display. A typical meta-nanoprinting device usually has image resolutions reaching 80 k dots per inch (dpi), far exceeding conventional technology such as gravure printing (typ. 5 k dpi). Besides, by fully exploiting the design degrees of freedom of nanostructured metasurfaces, meta-nanoprinting has been developed from previous single-channel to multiple-channels, to current multifunctional integration or even dynamic display.

In this review, we overview the development of meta-nanoprinting, including the physics of nanoprinting to manipulate optical amplitude and spectrum, single-functional meta-nanoprinting, multichannel meta-nanoprinting, dynamic meta-nanoprinting and multifunctional metasurface integrating nanoprinting with holography or metalens, etc.

Applications of meta-nanoprinting such as image display, vortex beam generation, information decoding and hiding, information encryption, high-density optical storage and optical anti-counterfeiting have also been discussed. Finally, we conclude the opportunities and challenges/perspectives in this rapidly developing research field of meta-nanoprinting.
Opto-Electronic Science_1
Opto-Electronic Science_2
Opto-Electronic Science_3
Opto-Electronic Science_4
Reviews and Discussions
Resonantly enhanced second- and third-harmonic generation in dielectric nonlinear metasurfaces
Fast source mask co-optimization method for high-NA EUV lithography
Polariton lasing in Mie-resonant perovskite nanocavity
High-Q resonant Terahertz metasurfaces
Efficient stochastic parallel gradient descent training for on-chip optical processor
Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications
A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency
Multi-wavelength nanowire micro-LEDs for future high speed optical communication
Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting
Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters
Generation of lossy mode resonances (LMR) using perovskite nanofilms

Previous Article                                Next Article
Copyright © Hot Paper