Microchip imaging cytometer: making healthcare available, accessible, and affordable
마이크로칩 이미징 세포기: 의료서비스를 사용할 수 있고 얻을 수 있으며 가격이 합리적이다
Microchip Imaging Cell Instrument: make medical services available, available and Price reasonable
Microchip Imaging cytometer: rendre les services médicaux disponibles, accessibles et abordables
микрочип - формирователь клеток изображения: сделать медицинское обслуживание доступным, доступным и недорогим
Xilong Yuan, Todd Darcie, Ziyin Wei, J Stewart Aitchison
Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
Opto-Electronic Advances, 03 August 2022

The Microchip Imaging Cytometer (MIC) is a class of integrated point-of-care detection systems based on the combination of optical microscopy and flow cytometry. MIC devices have the attributes of portability, cost-effectiveness, and adaptability while providing quantitative measurements to meet the needs of laboratory testing in a variety of healthcare settings.

Based on the use of microfluidic chips, MIC requires less sample and can complete sample preparation automatically. Therefore, they can provide quantitative testing results simply using a finger prick specimen. The decreased reagent consumption and reduced form factor also help improve the accessibility and affordability of healthcare services in remote and resource-limited settings.

In this article, we review recent developments of the Microchip Imaging Cytometer from the following aspects: clinical applications, microfluidic chip integration, imaging optics, and image acquisition. Following, we provide an outlook of the field and remark on promising technologies that may enable significant progress in the near future.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Reviews and Discussions
Photo-processing of perovskites: current research status and challenges
Towards integrated mode-division demultiplexing spectrometer by deep learning
Discovery of novel aspartate derivatives as highly potent and selective FXIa inhibitors
Large-scale and high-quality III-nitride membranes through microcavity-assisted crack propagation by engineering tensile-stressed Ni layers
Metasurface-based nanoprinting: principle, design and advances
All-optical logic gate computing for high-speed parallel information processing
100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution
Learning-based joint UAV trajectory and power allocation optimization for secure IoT networks
Natural history and cycle threshold values analysis of COVID-19 in Xiamen City, China
Terahertz generation from laser-induced plasma
Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives
Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes

Previous Article                                Next Article
Copyright © Hot Paper