MMM
YYYY
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
遗传算法辅助高性能元表面光学元原子设计
遺伝的アルゴリズム支援高性能素子表面光学素子原子設計
유전 알고리즘 보조 고성능 원표면 광학 원자 설계
Algoritmo genético ayuda al diseño atómico de elementos ópticos de superficie de elementos de alto rendimiento
Algorithme génétique auxiliaire haute performance Meta surface optique Meta Atomic Design
Генетический алгоритм помогает проектированию высокопроизводительных метаповерхностных оптических атомов
Zhenjie Yu ¹, Moxin Li 李墨馨 ¹, Zhenyu Xing ¹, Hao Gao 高豪 ¹, Zeyang Liu 刘泽阳 ¹, Shiliang Pu ², Hui Mao ², Hong Cai ², Qiang Ma ², Wenqi Ren ², Jiang Zhu 朱江 ², Cheng Zhang 张诚 ¹
¹ School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
中国 武汉 华中科技大学光学与电子信息学院 武汉光电国家实验室
² Hikvision Research Institute, Hangzhou, 310051, China
中国 杭州 海康威视研究院
Opto-Electronic Science, 20 September 2024
Abstract

Metasurfaces, composed of planar arrays of intricately designed meta-atom structures, possess remarkable capabilities in controlling electromagnetic waves in various ways. A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation, amplitude modulation, and polarization conversion.

Conventional design processes often involve extensive parameter sweeping, a laborious and computationally intensive task heavily reliant on designer expertise and judgement. Here, we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics, which is compatible to both single- and multi-objective device design tasks.

We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80% in the visible spectrum. We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator. The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination, with associated generation efficiencies surpassing 88%.

Finally, we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength, with efficiencies over 50%. Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization, empowering designers to create diverse high-performance and multifunctional metasurface optics.
Opto-Electronic Science_1
Opto-Electronic Science_2
Opto-Electronic Science_3
Opto-Electronic Science_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states
Data-driven polarimetric approaches fuel computational imaging expansion
Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-image-free phase retrieval from single-shot hologram
Soliton microcomb generation by cavity polygon modes
Focus control of wide-angle metalens based on digitally encoded metasurface
Spin-controlled generation of a complete polarization set with randomly-interleaved plasmonic metasurfaces
Stimulated Raman scattering microscopy with phase-controlled light focusing and aberration correction for rapid and label-free, volumetric deep tissue imaging
An inversely designed integrated spectrometer with reconfigurable performance and ultra-low power consumption
OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper