MMM
YYYY
Label-free trace detection of bio-molecules by liquid-interface assisted surface-enhanced Raman scattering using a microfluidic chip
使用微流控芯片通过液体界面辅助表面增强拉曼散射实现生物分子的无标记痕量检测
マイクロフロー制御チップを用いた液体界面支援表面増強Raman散乱による生体分子の無標識微量検出
마이크로 흐름 제어 칩을 사용하여 액체 인터페이스를 통해 표면을 보조하여 라만 산란을 강화하여 생물 분자의 무표시 흔적 검측을 실현한다
Detección de trazas no etiquetadas de biomoléculas mediante dispersión Raman mejorada de la superficie asistida por interfaz líquida con Chip microfluídico
Détection de traces non marquées de biomolécules par Diffusion Raman améliorée en surface assistée par interface liquide à l'aide d'une puce Microfluidique
Etikettenfreie Spurenerkennung von Biomolekülen durch flüssigkeits-unterstützte oberflächenverstärkte Raman-Streuung mittels mikrofluidischem Chip
Shi Bai ¹, Xueli Ren ², Kotaro Obata ¹, Yoshihiro Ito ², Koji Sugioka ¹
¹ Advanced Laser Processing Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
² Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Opto-Electronic Advances, 20 August 2022
Abstract

Surface-enhanced Raman scattering (SERS), owing to its high sensitivity based on localized surface plasmon resonance of nanostructured metals, is recently attracting much attention to be used for biotechnology, such as cell imaging and tumor therapy. On the other hand, the trace detection of bio-molecules with large molecular weight is still challenging because the troublesome treatment of SERS substrate using coupling or cross-linking agents is required.

In this paper, we apply liquid interface assisted SERS (LI-SERS) method, which provides unique features of collection and self-immobilization of analyte molecules on the SERS substrate, to realize the label-free trace detection of bio-molecules with detection limits of pM ~ fM. Specifically, deoxyribonucleic acid (DNA) discrimination and quantitative detection of β-Amyloid (Aβ) in trace-concentration are demonstrated to illustrate the ultrahigh sensitivity and versatility of the LI-SERS method.

The results suggest LI-SERS is promising for the early-stage diagnosis of diseases such as virus infection and Alzheimer's disease.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Photo-processing of perovskites: current research status and challenges
Towards integrated mode-division demultiplexing spectrometer by deep learning
Discovery of novel aspartate derivatives as highly potent and selective FXIa inhibitors
Large-scale and high-quality III-nitride membranes through microcavity-assisted crack propagation by engineering tensile-stressed Ni layers
Metasurface-based nanoprinting: principle, design and advances
All-optical logic gate computing for high-speed parallel information processing
100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution
Learning-based joint UAV trajectory and power allocation optimization for secure IoT networks
Natural history and cycle threshold values analysis of COVID-19 in Xiamen City, China
Terahertz generation from laser-induced plasma
Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives
Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper