Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors
무연 에너지 저장 다층 세라믹 커패시터의 전망과 과제
Perspectivas y desafíos para los condensadores cerámicos multicapa de almacenamiento de energía sin plomo
Perspectives et défis pour les condensateurs céramiques multicouches de stockage d'énergie sans plomb
Перспективы и проблемы для бессвинцовых многослойных керамических конденсаторов с накоплением энергии
Peiyao Zhao 赵培尧 ¹, Ziming Cai 蔡子明 ², Longwen Wu 吴隆文 ³, Chaoqiong Zhu 朱超琼 ¹, Longtu Li 李龙土 ¹, Xiaohui Wang 王晓慧 ¹
¹ State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
中国 北京 清华大学材料科学与工程研究院 新型陶瓷与精细工艺国家重点实验室
² School of Material Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
中国 徐州 中国矿业大学 材料与物理学院
³ College of Electrical Engineering, Sichuan University, Chengdu 610065, China
中国 成都 四川大学 电气信息学院
Journal of Advanced Ceramics, 12 November 2021

The growing demand for high-power-density electric and electronic systems has encouraged the development of energy-storage capacitors with attributes such as high energy density, high capacitance density, high voltage and frequency, low weight, high-temperature operability, and environmental friendliness.

Compared with their electrolytic and film counterparts, energy-storage multilayer ceramic capacitors (MLCCs) stand out for their extremely low equivalent series resistance and equivalent series inductance, high current handling capability, and high-temperature stability. These characteristics are important for applications including fast-switching third-generation wide-bandgap semiconductors in electric vehicles, 5G base stations, clean energy generation, and smart grids. There have been numerous reports on state-of-the-art MLCC energy-storage solutions. However, lead-free capacitors generally have a low-energy density, and high-energy density capacitors frequently contain lead, which is a key issue that hinders their broad application.

In this review, we present perspectives and challenges for lead-free energy-storage MLCCs. Initially, the energy-storage mechanism and device characterization are introduced; then, dielectric ceramics for energy-storage applications with aspects of composition and structural optimization are summarized. Progress on state-of-the-art energy-storage MLCCs is discussed after elaboration of the fabrication process and structural design of the electrode. Emerging applications of energy-storage MLCCs are then discussed in terms of advanced pulsed power sources and high-density power converters from a theoretical and technological point of view. Finally, the challenges and future prospects for industrialization of lab-scale lead-free energy-storage MLCCs are discussed.
Journal of Advanced Ceramics_1
Journal of Advanced Ceramics_2
Journal of Advanced Ceramics_3
Journal of Advanced Ceramics_4
Reviews and Discussions
Parametric study on the flutter sensitivity of a wide-chord hollow fan blade
Influence of aspect ratio and arrangement direction on the shear behavior of ellipsoids
Development of a double-layer shaking table for large-displacement high-frequency excitation
Effect of SiC Particle Size on Properties of SiC Porous Ceramics
Physical Layer Authentication in UAV-enabled Relay Networks Based on Manifold Learning
Risk assessment of fault water inrush during deep mining
Simvastatin Improves Outcomes of Endotoxin-induced Coagulopathy by Regulating Intestinal Microenvironment
Sound Insulation Performance of Pyramidal Truss Core Cylindrical Sandwich Structure
Coupling analysis of passenger and train flows for a large-scale urban rail transit system
Effects of minor B additions on tensile strength, fracture toughness and oxidation resistance of Nb–Si based alloys
Essential role of MALAT1 in reducing traumatic brain injury
Seasonal Cumulative Effect of Ural Blocking Episodes on the Frequent Cold events in China during the Early Winter of 2020/21

Previous Article                                Next Article
Copyright © Hot Paper