MMM
YYYY
Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6
中国极端气候预测,从 CMIP5 到 CMIP6 的增量演练
中国の極端な気候の予測、CMIP5からCMIP6への段階的な演習
중국의 극한 기후 예측, CMIP5에서 CMIP6으로 점진적 실행
Proyección de extremos climáticos en China, un ejercicio incremental de CMIP5 a CMIP6
Projection des extrêmes climatiques en Chine, un exercice incrémental du CMIP5 au CMIP6
Проекция экстремальных климатических явлений в Китае, поэтапное упражнение от CMIP5 к CMIP6
Huanhuan Zhu 朱欢欢 ¹ ², Zhihong Jiang 江志红 ² ³, Laurent Li 李肇新 ⁴
¹ Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China 南京信息工程大学 气候与环境变化国际合作联合实验室
² Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China 南京信息工程大学 气象灾害预报预警与评估协同创新中心
³ Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China 南京信息工程大学 气象灾害教育部重点实验室
⁴ Laboratoire de Météorologie Dynamique, CNRS, Sorbonne Université, Ecole Normale Supérieure, Ecole Polytechnique, Paris 75005, France
Science Bulletin, 21 July 2021
Abstract

This paper presents projections of climate extremes over China under global warming of 1.5, 2, and 3 °C above pre-industrial (1861-1900), based on the latest Coupled Model Intercomparison Project phase 6 (CMIP6) simulations. Results are compared with what produced by the precedent phase of the project, CMIP5. Model evaluation for the reference period (1985-2005) indicates that CMIP6 models outperform their predecessors in CMIP5, especially in simulating precipitation extremes.

Areal averages for changes of most indices are found larger in CMIP6 than in CMIP5. The emblematic annual mean temperature, when averaged over the whole of China in CMIP6, increases by 1.49, 2.21, and 3.53 °C (relative to 1985-2005) for 1.5, 2, and 3 °C above-preindustrial global warming levels, while the counterpart in CMIP5 is 1.20, 1.93 and 3.39 °C respectively. Similarly, total precipitation increases by 5.3%, 8.6%, and 16.3% in CMIP6 and by 4.4%, 7.0% and 12.8% in CMIP5, respectively.

The spatial distribution of changes for extreme indices is generally consistent in both CMIP5 and CMIP6, but with significantly higher increases in CMIP6 over northeast and northwest China for the hottest day temperature, and south China for the coldest night temperature.

In the south bank of the Yangtze River, and most regions around 40°N, CMIP6 shows higher increases for both total precipitation and heavy precipitation. The projected difference between CMIP6 and CMIP5 is mainly attributable to the physical upgrading of climate models and largely independent from their emission scenarios.
Science Bulletin_1
Science Bulletin_2
Science Bulletin_3
Science Bulletin_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Seeing at a distance with multicore fibers
Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
Reconfigurable optical neural networks with Plug-and-Play metasurfaces
OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots
High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses
Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution
Active tuning of anisotropic phonon polaritons in natural van der Waals crystals with negative permittivity substrates and its application in energy transport
NIR-triggered on-site NO/ROS/RNS nanoreactor: Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper