MMM
YYYY
Range-Angle Dependent Beampattern Synthesis Method for OFDM-Based Passive Radar
基于OFDM的无源雷达的距离角相关波束图案合成方法
OFDMベースのパッシブレーダのためのレンジ角度依存ビームパターン合成法
OFDM 기반 수동 레이더에 대한 범위 각도 종속 빔 패턴 합성 방법
Método de síntesis de patrón de haz dependiente del rango y el ángulo para radar pasivo basado en OFDM
Méthode de synthèse de faisceaux dépendant de la distance et de l'angle pour un radar passif basé sur l'OFDM
Метод синтеза диаграммы направленности в зависимости от угла дальности для пассивного радара на основе OFDM
RAO Yunhua 饶云华 ¹ ², HE Hao ¹, WAN Xianrong 万显荣 ¹ ², YI Jianxin 易建新 ¹ ²
¹ School of Electronic Information, Wuhan University, Wuhan 430072, Hubei, China
中国 湖北 武汉 武汉大学电子信息学院
² Shenzhen Research Institute, Wuhan University, Shenzhen 518063, Guangdong, China
中国 广东 深圳 武汉大学深圳研究院
Wuhan University Journal of Natural Sciences, 24 June 2022
Abstract

Frequency diverse array (FDA) radar applies a tiny frequency offset across its adjacent transmitting array elements to generate a range-angle-dependent beampattern. The increased degrees-of-freedom (DOFs) in range domain can help improve the performance of radar in target detection, localization, and clutter suppression.

Passive radar utilizes uncontrollable external signal as illuminator, which makes it difficult to apply traditional frequency diverse process method. However, the third-party illuminator such as Orthogonal Frequency Division Multiplexing (OFDM) signal usually consists of several closely spaced modulated carriers, and it has been widely selected as the illuminator for passive radar in recent years.

Considering the orthogonality between even separated subcarriers, we propose a new frequency diverse process method by extracting and processing each subcarrier of received data independently and attempt to provide a range-angle dependent beampattern for OFDM passive radar. Numerical results and real data analyses verify the superiority of frequency diversity process on the received data of OFDM passive radar.
Wuhan University Journal of Natural Sciences_1
Wuhan University Journal of Natural Sciences_2
Wuhan University Journal of Natural Sciences_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
Optical scanning endoscope via a single multimode optical fiber
Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications
A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency
Multi-wavelength nanowire micro-LEDs for future high speed optical communication
Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting
Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
Generation of lossy mode resonances (LMR) using perovskite nanofilms
Acousto-optic scanning multi-photon lithography with high printing rate
Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
Miniature tunable Airy beam optical meta-device



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper