MMM
YYYY
Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems
用于本征可拉伸光电系统的软电子材料的最新进展
本質的に伸縮可能な光電子システムのためのソフト電子材料の最近の進歩
본질적으로 신축성 있는 광전자 시스템을 위한 연성 전자 재료의 최근 발전
Avances recientes en materiales electrónicos blandos para sistemas optoelectrónicos intrínsecamente estirables
Progrès récents dans les matériaux électroniques souples pour les systèmes optoélectroniques intrinsèquement étirables
Последние достижения в области мягких электронных материалов для растяжимых оптоэлектронных систем
Ja Hoon Koo ¹, Huiwon Yun ¹ ², Woongchan Lee ¹, Sung-Hyuk Sunwoo ¹ ², Hyung Joon Shim ¹, Dae-Hyeong Kim ¹ ² ³
¹ Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
² School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
³ Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
Opto-Electronic Advances, 28 July 2022
Abstract

In recent years, significant progress has been achieved in the design and fabrication of stretchable optoelectronic devices. In general, stretchability has been achieved through geometrical modifications of device components, such as with serpentine interconnects or buckled substrates. However, the local stiffness of individual pixels and the limited pixel density of the array have impeded further advancements in stretchable optoelectronics. Therefore, intrinsically stretchable optoelectronics have been proposed as an alternative approach.

Herein, we review the recent advances in soft electronic materials for application in intrinsically stretchable optoelectronic devices. First, we introduce various intrinsically stretchable electronic materials, comprised of electronic fillers, elastomers, and surfactants, and exemplify different intrinsically stretchable conducting and semiconducting composites. We also describe the processing methods used to fabricate the electrodes, interconnections, charge transport layers, and optically active layers used in intrinsically stretchable optoelectronic devices.

Subsequently, we review representative examples of intrinsically stretchable optoelectronic devices, including light-emitting capacitors, light-emitting diodes, photodetectors, and photovoltaics. Finally, we briefly discuss intrinsically stretchable integrated optoelectronic systems.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Opto-Electronic Advances_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
Optical scanning endoscope via a single multimode optical fiber
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
Data-driven polarimetric imaging: a review
Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
Flat soliton microcomb source
Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection
Applications of lasers: A promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays
Light-stimulated adaptive artificial synapse based on nanocrystalline metal-oxide film



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper