MMM
YYYY
Retrieval & Interaction Machine for Tabular Data Prediction
表格数据预测的检索与交互机
表データ予測のための検索とインタラクションマシン
표 데이터 예측 검색 및 인 터 랙 션
Recuperación e interacción de la predicción de datos tabulares
Machine de recherche et d'interaction pour la prévision des données tabulaires
поиск и взаимодействие прогнозов табличных данных
Jiarui Qin 秦佳锐 ¹, Weinan Zhang 张伟楠 ¹, Rong Su ², Zhirong Liu ², Weiwen Liu ², Ruiming Tang 唐睿明 ², Xiuqiang He 何秀强 ², Yong Yu 俞勇 ¹
¹ Shanghai Jiao Tong University
上海交通大学
² Huawei Noah’s Ark Lab
华为诺亚方舟实验室
arXiv, 11 August 2021
Abstract

Prediction over tabular data is an essential task in many data science applications such as recommender systems, online advertising, medical treatment, etc. Tabular data is structured into rows and columns, with each row as a data sample and each column as a feature attribute. Both the columns and rows of the tabular data carry useful patterns that could improve the model prediction performance. However, most existing models focus on the cross-column patterns yet overlook the cross-row patterns as they deal with single samples independently.

In this work, we propose a general learning framework named Retrieval & Interaction Machine (RIM) that fully exploits both cross-row and cross-column patterns among tabular data. Specifically, RIM first leverages search engine techniques to efficiently retrieve useful rows of the table to assist the label prediction of the target row, then uses feature interaction networks to capture the cross-column patterns among the target row and the retrieved rows so as to make the final label prediction.

We conduct extensive experiments on 11 datasets of three important tasks, i.e., CTR prediction (classification), top-n recommendation (ranking) and rating prediction (regression). Experimental results show that RIM achieves significant improvements over the state-of-the-art and various baselines, demonstrating the superiority and efficacy of RIM.
arXiv_1
arXiv_2
arXiv_3
arXiv_4
Reviews and Discussions
https://www.hotpaper.io/index.html
IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
Recent advances in exciton-polariton in perovskite
Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
Phase matching sampling algorithm for sampling rate reduction in time division multiplexing optical fiber sensor system



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper