MMM
YYYY
Retrieval & Interaction Machine for Tabular Data Prediction
表格数据预测的检索与交互机
表データ予測のための検索とインタラクションマシン
표 데이터 예측 검색 및 인 터 랙 션
Recuperación e interacción de la predicción de datos tabulares
Machine de recherche et d'interaction pour la prévision des données tabulaires
поиск и взаимодействие прогнозов табличных данных
Jiarui Qin 秦佳锐 ¹, Weinan Zhang 张伟楠 ¹, Rong Su ², Zhirong Liu ², Weiwen Liu ², Ruiming Tang 唐睿明 ², Xiuqiang He 何秀强 ², Yong Yu 俞勇 ¹
¹ Shanghai Jiao Tong University
上海交通大学
² Huawei Noah’s Ark Lab
华为诺亚方舟实验室
arXiv, 11 August 2021
Abstract

Prediction over tabular data is an essential task in many data science applications such as recommender systems, online advertising, medical treatment, etc. Tabular data is structured into rows and columns, with each row as a data sample and each column as a feature attribute. Both the columns and rows of the tabular data carry useful patterns that could improve the model prediction performance. However, most existing models focus on the cross-column patterns yet overlook the cross-row patterns as they deal with single samples independently.

In this work, we propose a general learning framework named Retrieval & Interaction Machine (RIM) that fully exploits both cross-row and cross-column patterns among tabular data. Specifically, RIM first leverages search engine techniques to efficiently retrieve useful rows of the table to assist the label prediction of the target row, then uses feature interaction networks to capture the cross-column patterns among the target row and the retrieved rows so as to make the final label prediction.

We conduct extensive experiments on 11 datasets of three important tasks, i.e., CTR prediction (classification), top-n recommendation (ranking) and rating prediction (regression). Experimental results show that RIM achieves significant improvements over the state-of-the-art and various baselines, demonstrating the superiority and efficacy of RIM.
arXiv_1
arXiv_2
arXiv_3
arXiv_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
Optical scanning endoscope via a single multimode optical fiber
Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications
A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency
Multi-wavelength nanowire micro-LEDs for future high speed optical communication
Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting
Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
Generation of lossy mode resonances (LMR) using perovskite nanofilms
Acousto-optic scanning multi-photon lithography with high printing rate
Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
Miniature tunable Airy beam optical meta-device



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper