Tailoring a novel hierarchical cheese-like porous biochar from algae residue to boost sulfathiazole removal
설파티아졸 제거를 향상시키기 위해 조류 잔류물로부터 새로운 계층적 치즈와 같은 다공성 바이오 숯을 맞춤화
Adaptación de un novedoso biocarbón poroso similar al queso jerárquico a partir de residuos de algas para impulsar la eliminación de sulfatiazol
Adaptation d'un nouveau biochar poreux de type fromage hiérarchique à partir de résidus d'algues pour stimuler l'élimination du sulfathiazole
Разработка нового иерархического сыроподобного пористого биоугля из остатков водорослей для ускорения удаления сульфатиазола
Ke Wang 王科 ¹, Yue Wang ¹, Shiyu Zhang ¹, Yi-di Chen 陈以頔 ¹ ², Rupeng Wang 王汝鹏 ¹, Shih-Hsin Ho 贺诗欣 ¹
¹ State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, PR China
中国 哈尔滨 哈尔滨工业大学环境学院 城市水资源与水环境国家重点实验室
² State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
中国 深圳 哈尔滨工业大学(深圳)土木与环境工程学院 城市水资源与水环境国家重点实验室
Environmental Science & Ecotechnology, 9 March 2022

Aquatic pollution caused by antibiotics poses a significant threat to human health and the ecosystem. Inspired from 'Emmental Cheese' that owns lots of natural pores, we here fabricated a hierarchical cheese-like porous Spirulina residue biochar (KSBC) activated by KHCO₃ for efficiently boosting the removal of sulfathiazole (STZ).

Through learning form nature that the CO₂ produced by bacteria can serve as the natural pore maker (like cheese-making), KHCO₃ was thus selected as the gas generating agent in this study. The effect of adding KHCO₃ on the surface properties of KSBC was comprehensively investigated. Benefiting from the activation, the KSBC with the mass ratio of 2:1 (2K-SBC) possessed the largest specific surface areas (1100 m² g⁻¹), which was approximately 81 times that of the original (not activated) Spirulina residue biochar (SBC) (13.56 m² g⁻¹). Moreover, 2K-SBC exhibited the maximum adsorption capacity for STZ (218.4 mg g⁻¹), dramatically higher than the SBC (25.78 mg g⁻¹). The adsorption kinetics and adsorption isotherms exhibited that the adsorption behavior of 2K-SBC for STZ was consistent with the pseudo-second-order and Langmuir models.

Additionally, the adsorption thermodynamics revealed that the adsorption of STZ on 2K-SBC was spontaneous and exothermic. The pore-filling and electrostatic interaction were considered the main mechanism for the adsorption of STZ on 2K-SBC, whereas the π-π electron donor-acceptor (EDA) interaction and hydrogen bond would also partially contribute to the adsorption process.
Environmental Science & Ecotechnology_1
Environmental Science & Ecotechnology_2
Environmental Science & Ecotechnology_3
Environmental Science & Ecotechnology_4
Reviews and Discussions
Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives
Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes
Ultrahigh-resolution on-chip spectrometer with silicon photonic resonators
Tracing the formation of oxygen vacancies at the conductive LaAlO₃/SrTiO₃ interface via photoemission
Photonic spin Hall effect: fundamentals and emergent applications
Research on Visual Detection Algorithm for Groove Feature Sizes by Means of Structured Light Projection
Active odd-mode-metachannel for single-conductor systems
Dual bound states in the continuum enhanced second harmonic generation with transition metal dichalcogenides monolayer
An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities
Time resolved studies reveal the origin of the unparalleled high efficiency of one nanosecond laser ablation in liquids
Nonlinear optics with structured light
Relationship between adjustment of low water level and utilization of water depth in Shashi Reach in middle Yangtze River

Previous Article                                Next Article
Copyright © Hot Paper