Third-harmonic generation and imaging with resonant Si membrane metasurface
공진 규소막 초표면의 3차 공파 발생과 영상
Generación e imagen de terceros armónicos en la supersuperficie de la película de silicio Resonador
Génération de troisième harmonique de la supersurface du film de silicium résonant et imagerie
генерация и визуализация тройной гармоники на сверхповерхности резонансной кремниевой пленки
Ze Zheng ¹, Lei Xu 徐雷 ¹, Lujun Huang 黄陆军 ² ³, Daria Smirnova ⁴, Khosro Zangeneh Kamali ⁴, Arman Yousefi ¹, Fu Deng ⁵, Rocio Camacho-Morales ⁴, Cuifeng Ying ¹, Andrey E. Miroshnichenko ², Dragomir N. Neshev ⁴, Mohsen Rahmani ¹
¹ Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
² School of Engineering and Information Technology, University of New South Wales, Canberra ACT 2600, Australia
³ School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
中国 上海 华东师范大学物理与电子科学学院
⁴ ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Research School of Physics, Australian National University, Canberra ACT 2601, Australia
⁵ Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
中国 香港 香港科技大学物理系
Opto-Electronic Advances, 31 August 2023

Dielectric metasurfaces play an increasingly important role in enhancing optical nonlinear generations owing to their ability to support strong light-matter interactions based on Mie-type multipolar resonances. Compared to metasurfaces composed of the periodic arrangement of nanoparticles, inverse, so-called, membrane metasurfaces offer unique possibilities for supporting multipolar resonances, while maintaining small unit cell size, large mode volume and high field enhancement for enhancing nonlinear frequency conversion.

Here, we theoretically and experimentally investigate the formation of bound states in the continuum (BICs) from silicon dimer-hole membrane metasurfaces. We demonstrate that our BIC-formed resonance features a strong and tailorable electric near-field confinement inside the silicon membrane films. Furthermore, we show that by tuning the gap between the holes, one can open a leaky channel to transform these regular BICs into quasi-BICs, which can be excited directly under normal plane wave incidence.

To prove the capabilities of such metasurfaces, we demonstrate the conversion of an infrared image to the visible range, based on the Third-harmonic generation (THG) process with the resonant membrane metasurfaces. Our results suggest a new paradigm for realising efficient nonlinear photonics metadevices and hold promise for extending the applications of nonlinear structuring surfaces to new types of all-optical near-infrared imaging technologies.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Opto-Electronic Advances_4
Reviews and Discussions
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
Optical scanning endoscope via a single multimode optical fiber
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
Data-driven polarimetric imaging: a review
Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
Flat soliton microcomb source
Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection
Applications of lasers: A promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays
Light-stimulated adaptive artificial synapse based on nanocrystalline metal-oxide film

Previous Article                                Next Article
Copyright © Hot Paper