Third-harmonic generation and imaging with resonant Si membrane metasurface
공진 규소막 초표면의 3차 공파 발생과 영상
Generación e imagen de terceros armónicos en la supersuperficie de la película de silicio Resonador
Génération de troisième harmonique de la supersurface du film de silicium résonant et imagerie
генерация и визуализация тройной гармоники на сверхповерхности резонансной кремниевой пленки
Ze Zheng ¹, Lei Xu 徐雷 ¹, Lujun Huang 黄陆军 ² ³, Daria Smirnova ⁴, Khosro Zangeneh Kamali ⁴, Arman Yousefi ¹, Fu Deng ⁵, Rocio Camacho-Morales ⁴, Cuifeng Ying ¹, Andrey E. Miroshnichenko ², Dragomir N. Neshev ⁴, Mohsen Rahmani ¹
¹ Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
² School of Engineering and Information Technology, University of New South Wales, Canberra ACT 2600, Australia
³ School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
中国 上海 华东师范大学物理与电子科学学院
⁴ ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Research School of Physics, Australian National University, Canberra ACT 2601, Australia
⁵ Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
中国 香港 香港科技大学物理系
Opto-Electronic Advances, 31 August 2023

Dielectric metasurfaces play an increasingly important role in enhancing optical nonlinear generations owing to their ability to support strong light-matter interactions based on Mie-type multipolar resonances. Compared to metasurfaces composed of the periodic arrangement of nanoparticles, inverse, so-called, membrane metasurfaces offer unique possibilities for supporting multipolar resonances, while maintaining small unit cell size, large mode volume and high field enhancement for enhancing nonlinear frequency conversion.

Here, we theoretically and experimentally investigate the formation of bound states in the continuum (BICs) from silicon dimer-hole membrane metasurfaces. We demonstrate that our BIC-formed resonance features a strong and tailorable electric near-field confinement inside the silicon membrane films. Furthermore, we show that by tuning the gap between the holes, one can open a leaky channel to transform these regular BICs into quasi-BICs, which can be excited directly under normal plane wave incidence.

To prove the capabilities of such metasurfaces, we demonstrate the conversion of an infrared image to the visible range, based on the Third-harmonic generation (THG) process with the resonant membrane metasurfaces. Our results suggest a new paradigm for realising efficient nonlinear photonics metadevices and hold promise for extending the applications of nonlinear structuring surfaces to new types of all-optical near-infrared imaging technologies.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Opto-Electronic Advances_4
Reviews and Discussions
In-fiber photoelectric device based on graphene-coated tilted fiber grating
Solar cell-based hybrid energy harvesters towards sustainability
8-nm narrowband photodetection in diamonds
31.38 Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure
High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications
Vectorial spin-orbital Hall effect of light upon tight focusing and its experimental observation in azopolymer films
Encoding physics to learn reaction–diffusion processes
Accurate medium-range global weather forecasting with 3D neural networks
Hybrid bound states in the continuum in terahertz metasurfaces
Deep learning assisted variational Hilbert quantitative phase imaging
Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction
Spatio-temporal isolator in lithium niobate on insulator

Previous Article                                Next Article
Copyright © Hot Paper