MMM
YYYY
Three-dimensional fine crustal P-wave velocity structure in the Yangbi and Eryuan earthquake regions, Yunnan, China
云南阳璧和洱源震区三维精细地壳纵波速度结构
中国雲南省漾ビイ・エルユアン地震地域における三次元微細地殻P波速度構造
중국 Yunnan, Yangbi 및 Eryuan 지진 지역의 3차원 미세 지각 P파 속도 구조
Estructura tridimensional de la velocidad de la onda P de la corteza fina en las regiones sísmicas de Yangbi y Eryuan, Yunnan, China
Structure tridimensionnelle de vitesse d'onde P crustale fine dans les régions sismiques de Yangbi et d'Eryuan, Yunnan, Chine
Трехмерная тонкая коровая структура скоростей P-волн в районах землетрясений Янби и Эрюань, Юньнань, Китай
Jia Jia 贾佳 ¹, Qingju Wu 吴庆举 ², Fuyun Wang 王夫运 ¹
¹ Geophysical Exploration Center, China Earthquake Administration, Zhengzhou 450002, China
中国 郑州 中国地震局地球物理勘探中心
² Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
中国 北京 中国地震局地球物理研究所
Earthquake Science, 1 September 2021
Abstract

A magnitude 5.5 earthquakes occurred in Eryuan County, Dali Bai Autonomous Prefecture, Yunnan Province, China, on March 3. And a magnitude 5.0 earthquake occurred in the same place on April 17, 2013, i.e., 45 days later. Then, on May 21, 2021, multiple earthquakes-one with magnitude 6.4 and several at 5.0 or above, occurred in Yangbi County, Dali Bai Autonomous Prefecture, Yunnan Province, China.

All of these occurred in the Weixi-Qiaohou-Weishan fault zone. In this study, 1,874 seismic events in Yangbi and Eryuan counties were identified by automatic micro-seismic tools and the first arrivals were picked up manually. Following this, a total of 11,968 direct P-wave absolute arrivals and 73,987 high-quality P-wave relative arrivals were collected for joint inversion via the double difference tomography method. This was done to obtain the regional three-dimensional crustal fine P-wave velocity structure. The results show that the travel time residuals before and after inversion decreased from the initial –0.1–0.1 s to –0.06–0.06 s. The upper crust in the study area, which exhibited a low-velocity anomaly, corresponded to the basin region; this indicated that the low-velocity anomaly in the shallow part of the study area was affected by the basin.

Results also showed some correlation between the distribution of the earthquakes and velocity structure, as there was a low-velocity body Lv1 with a wide distribution at depths ranging from 15–20 km in the Yangbi and Eryuan earthquake regions. In addition, earthquakes occurred predominantly in the high-low velocity abnormal transition zone. The low-velocity body in the middle and lower crust may be prone to concentrating upper crustal stress, thus leading to the occurrence of earthquakes.
Earthquake Science_1
Earthquake Science_2
Earthquake Science_3
Earthquake Science_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications
A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency
Multi-wavelength nanowire micro-LEDs for future high speed optical communication
Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting
Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
Generation of lossy mode resonances (LMR) using perovskite nanofilms
Acousto-optic scanning multi-photon lithography with high printing rate
Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
Miniature tunable Airy beam optical meta-device
Data-driven polarimetric imaging: a review
Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper