MMM
YYYY
Carbon Encapsulated Nickel Nanocomposites for the Cathode in Advanced Lithium Sulfur Batteries
用于先进锂硫电池阴极的碳包覆镍纳米复合材料
高度なリチウム硫黄電池のカソード用の炭素カプセル化ニッケルナノ複合材料
고급 리튬 황 배터리의 음극을 위한 탄소 캡슐화 니켈 나노복합체
Nanocompuestos de níquel encapsulados en carbono para el cátodo en baterías avanzadas de azufre de litio
Nanocomposites de nickel encapsulés dans du carbone pour la cathode des batteries lithium-soufre avancées
Инкапсулированные углеродом нанокомпозиты никеля для катода в современных литий-серных батареях
Yang Yuxiang 杨宇翔, Xie Jingxin 谢婧新, Wu Genghuang 吴耿煌, Zhu Na 朱娜, Li Huan 李欢, Rong Junfeng 荣峻峰
SINOPEC Research Institute of Petroleum Processing, Beijing 100083
中国 北京 中国石化石油化工科学研究院
China Petroleum Processing & Petrochemical Technology, 30 December 2021
Abstract

Lithium sulfur (Li-S) batteries are poised to be the next generation of high-density energy storage devices. In recent years, the concept of “electrocatalysis” has been introduced into the field of Li-S batteries, and some transition metals have been proved to catalyze the electrochemical conversion reaction of sulfur species. In this study, carbon encapsulated nickel nanoparticles (Ni@C) with a specific surface area of 146 m2/g are shown to play a definitive electrocatalytic role for the sulfur cathode. With Ni@C incorporated, the Ni@C/G-S electrode achieved a better electrochemical performance than the G-S electrode.

Moreover, the reversible capacity and cycle stability were further improved through chemical modifications of the carbon shell. The influence of doping with different elements on the Li-S battery performance was also investigated in detail. Higher specific capacities of 1229 mAh/g, 927 mAh/g, and 830 mAh/g were achieved at 0.2 C, 0.5 C, and 1.0 C for the N-Ni@C-G/S electrode. Besides, the B-Ni@C-G/S electrode possessed a best cycle stability.
China Petroleum Processing & Petrochemical Technology_1
China Petroleum Processing & Petrochemical Technology_2
China Petroleum Processing & Petrochemical Technology_3
Reviews and Discussions
https://www.hotpaper.io/index.html
IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
Recent advances in exciton-polariton in perovskite
Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
Phase matching sampling algorithm for sampling rate reduction in time division multiplexing optical fiber sensor system



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper