Generation of lossy mode resonances (LMR) using perovskite nanofilms
칼슘 티타늄 나노 필름을 사용하여 손실 모드 공명 발생(LMR)
Resonancia de modo de pérdida (lmr) producida con nanopelículas de Perovskita
Utilisation de Nanofilms de pérovskite pour produire la résonance de mode de perte (LMR)
Резонанс режима потерь с использованием нанопленки перовскита (LMR)
Dayron Armas ¹, Ignacio R. Matias ¹ ², M. Carmen Lopez-Gonzalez ³, Carlos Ruiz Zamarreño ¹ ², Pablo Zubiate ¹, Ignacio del Villar ¹ ², Beatriz Romero ³
¹ Electrical, Electronic and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain
² Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
³ Experimental Science and Technology School, Rey Juan Carlos University, 28933 Mostoles, Spain
Opto-Electronic Advances, 26 February 2024

The results presented here show for the first time the experimental demonstration of the fabrication of lossy mode resonance (LMR) devices based on perovskite coatings deposited on planar waveguides. Perovskite thin films have been obtained by means of the spin coating technique and their presence was confirmed by ellipsometry, scanning electron microscopy, and X-ray diffraction testing.

The LMRs can be generated in a wide wavelength range and the experimental results agree with the theoretical simulations. Overall, this study highlights the potential of perovskite thin films for the development of novel LMR-based devices that can be used for environmental monitoring, industrial sensing, and gas detection, among other applications.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Reviews and Discussions
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
Optical scanning endoscope via a single multimode optical fiber
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
Data-driven polarimetric imaging: a review
Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
Flat soliton microcomb source
Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection
Applications of lasers: A promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays
Light-stimulated adaptive artificial synapse based on nanocrystalline metal-oxide film

Previous Article                                Next Article
Copyright © Hot Paper