MMM
YYYY
Laser additive manufacturing of Si/ZrO2 tunable crystalline phase 3D nanostructures
Si/ZrO₂ 可调谐晶相 3D 纳米结构的激光增材制造
Si/ZrO₂調整可能結晶相3Dナノ構造のレーザー積層造形
Si/ZrO₂ 가변 결정상 3D 나노구조의 레이저 적층 제조
Fabricación aditiva por láser de nanoestructuras 3D de fase cristalina sintonizable de Si/ZrO₂
Fabrication additive laser de nanostructures 3D en phase cristalline accordable Si/ZrO₂
Лазерное аддитивное производство трехмерных наноструктур с перестраиваемой кристаллической фазой Si/ZrO₂
Greta Merkininkaitė ¹ ², Edvinas Aleksandravičius ³, Mangirdas Malinauskas ³, Darius Gailevičius ² ³, Simas Šakirzanovas ¹ ⁴
¹ Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, Vilnius LT-03225, Lithuania
² Femtika, Sauletekio Ave. 15, Vilnius LT-10224, Lithuania
³ Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 10, Vilnius LT-10223, Lithuania
⁴ Department of Chemical Engineering and Technology, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
Opto-Electronic Advances, 28 January 2022
Abstract

The current study is directed to the rapidly developing field of inorganic material 3D object production at nano-/micro scale. The fabrication method includes laser lithography of hybrid organic-inorganic materials with subsequent heat treatment leading to a variety of crystalline phases in 3D structures.

In this work, it was examined a series of organometallic polymer precursors with different silicon (Si) and zirconium (Zr) molar ratios, ranging from 9:1 to 5:5, prepared via sol-gel method. All mixtures were examined for perspective to be used in 3D laser manufacturing by fabricating nano- and micro-feature sized structures. Their spatial downscaling and surface morphology were evaluated depending on chemical composition and crystallographic phase.

The appearance of a crystalline phase was proven using single-crystal X-ray diffraction analysis, which revealed a lower crystallization temperature for microstructures compared to bulk materials. Fabricated 3D objects retained a complex geometry without any distortion after heat treatment up to 1400 °C. Under the proper conditions, a wide variety of crystalline phases as well as zircon (ZrSiO₄ - a highly stable material) can be observed.

In addition, the highest new record of achieved resolution below 60 nm has been reached. The proposed preparation protocol can be used to manufacture micro/nano-devices with high precision and resistance to high temperature and aggressive environment.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Opto-Electronic Advances_4
Reviews and Discussions
https://www.hotpaper.io/index.html
High-intensity spatial-mode steerable frequency up-converter toward on-chip integration
Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
Optical scanning endoscope via a single multimode optical fiber
Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
Data-driven polarimetric imaging: a review
Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
Flat soliton microcomb source
Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper