Learning-based joint UAV trajectory and power allocation optimization for secure IoT networks
보안 사물인터넷 네트워크에서 학습 기반 연합 무인기 궤적 및 전력 분배 최적화
Optimización de la trayectoria y distribución de energía de los vehículos aéreos no tripulados conjuntos basada en el aprendizaje en la red de Internet de las cosas seguras
Optimisation de la trajectoire et de l'allocation de puissance de l'UAV basée sur l'apprentissage dans le réseau sécurisé d'Internet des objets
оптимизация распределения мощности и траекторий на основе обучения
Dan Deng 邓单 ¹, Xingwang Li 李兴旺 ², Varun Menon ³, Md Jalil Piran ⁴, Hui Chen 陈慧 ², Mian Ahmad Jan ⁵
¹ School of Information Engineering, Guangzhou Panyu Polytechnic, Guangzhou, 410630, China
中国 广州 广州番禺职业技术学院信息工程学院
² School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454150, China
中国 焦作 河南理工大学 信息科学与工程学院
³ Department of Computer Science and Engineering, SCMS School of Engineering and Technology, India
⁴ Department of Computer Science and Engineering, Sejong University, South Korea
⁵ Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan
Digital Communications and Networks, 24 August 2022

Non-Orthogonal Multiplex Access (NOMA) can be deployed in Unmanned Aerial Vehicle (UAV) networks to improve spectrum efficiency. Due to the broadcasting feature of NOMA-UAV networks, it is essential to focus on the security of the wireless system. This paper focuses on maximizing the secrecy sum rate under the constraint of the achievable rate of the legitimate channels. To tackle the non-convexity optimization problem, a reinforcement learning-based alternative optimization algorithm is proposed.

Firstly, with the help of successive convex approximations, the optimal power allocation scheme with a given UAV trajectory is obtained by using convex optimization tools. Afterwards, through plenty of explorations of the wireless environment, the Q-learning networks approach the optimal location transition strategy of the UAV, even without the wireless channel state information.
Digital Communications and Networks_1
Digital Communications and Networks_2
Digital Communications and Networks_3
Reviews and Discussions
Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
Physics-informed deep learning for fringe pattern analysis
Advancing computer-generated holographic display thanks to diffraction model-driven deep nets
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry
Flat soliton microcomb source
Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection
Deep learning enabled single-shot absolute phase recovery in high-speed composite fringe pattern profilometry of separated objects

Previous Article                                Next Article
Copyright © Hot Paper