Ostensibly perpetual optical data storage in glass with ultra-high stability and tailored photoluminescence
뛰어난 안정성과 맞춤형 광학 발광을 제공하는 유리 표면 영구 광학 데이터 저장소
Almacenamiento de datos ópticos permanentes en superficies de vidrio con ultraalta estabilidad y fotoluminiscencia personalizada
Stockage optique permanent de données sur les surfaces vitrées avec stabilité ultra élevée et Photoluminescence personnalisée
постоянное оптическое накопление данных на стеклянной поверхности с ультравысокой устойчивостью и настраиваемой фотолюминесценцией
Zhuo Wang 王卓 ¹, Bo Zhang 张博 ¹, Dezhi Tan 谭德志 ², Jianrong Qiu 邱建荣 ¹ ³
¹ State Key Laboratory of Modern Optical Instrumentation, and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
中国 浙江 浙江大学光电科学与工程学院 现代光学仪器国家重点实验室
² Zhejiang Lab, Hangzhou 311100, China
中国 杭州 之江实验室
³ CAS Center for Excellence in Ultra-intense Laser Science, Chinese Academy of Sciences, Shanghai 201800, China
中国 上海 中国科学院 超强激光科学卓越创新中心
Opto-Electronic Advances, 31 August 2022

Long-term optical data storage (ODS) technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data. Here, ODS with an ultralong lifetime of 2107 years is attained with single ultrafast laser pulse induced reduction of Eu3+ ions and tailoring of optical properties inside the Eu-doped aluminosilicate glasses.

We demonstrate that the induced local modifications in the glass can stand against the temperature of up to 970 K and strong ultraviolet light irradiation with the power density of 100 kW/cm2. Furthermore, the active ions of Eu2+ exhibit strong and broadband emission with the full width at half maximum reaching 190 nm, and the photoluminescence (PL) is flexibly tunable in the whole visible region by regulating the alkaline earth metal ions in the glasses. The developed technology and materials will be of great significance in photonic applications such as long-term ODS.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Reviews and Discussions
High-speed visible light communication based on micro-LED: A technology with wide applications in next generation communication
Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays
Comparative analysis of NovaSeq 6000 and MGISEQ 2000 single-cell RNA sequencing data
Integrated liver proteomics and metabolomics identify metabolic pathways affected by pantothenic acid deficiency in Pekin ducks
Photo-processing of perovskites: current research status and challenges
Influence of N-doping on dielectric properties of carbon-coated copper nanocomposites in the microwave and terahertz ranges
Towards integrated mode-division demultiplexing spectrometer by deep learning
Discovery of novel aspartate derivatives as highly potent and selective FXIa inhibitors
Large-scale and high-quality III-nitride membranes through microcavity-assisted crack propagation by engineering tensile-stressed Ni layers
Metasurface-based nanoprinting: principle, design and advances
All-optical logic gate computing for high-speed parallel information processing
100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution

Previous Article                                Next Article
Copyright © Hot Paper