Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing
초속 레이저는 ITO 박막에 주기성 투명 나노선에 직접 기록된다
El láser Femtosegundo escribe directamente en nanocables transparentes periódicos en películas Ito
Le Laser femtoseconde écrit directement dans le nanofil transparent périodique dans le film Ito
Фемтосекундный лазер записывает циклические прозрачные нанолинии прямо в пленку ITO
Qilin Jiang 蒋其麟 ¹, Long Chen 陈龙 ¹, Jukun Liu 刘聚坤 ¹, Yuchan Zhang 张羽婵 ¹, Shian Zhang 张诗按 ¹, Donghai Feng 冯东海 ¹, Tianqing Jia 贾天卿 ¹ ³, Peng Zhou ², Qian Wang ², Zhenrong Sun 孙真荣 ¹, Hongxing Xu 徐红星 ¹
¹ State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
中国 上海 华东师范大学物理与电子科学学院 精密光谱科学与技术国家重点实验室
² Huawei Technologies Co, Ltd., Bantian Longgang District, Shenzhen 518129, China
中国 深圳 华为技术有限公司
³ Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
中国 太原 山西大学 山西省极端光学协同创新中心
Opto-Electronic Science, 9 February 2023

This paper reports the fabrication of regular large-area laser-induced periodic surface structures (LIPSSs) in indium tin oxide (ITO) films via femtosecond laser direct writing focused by a cylindrical lens. The regular LIPSSs exhibited good properties as nanowires, with a resistivity almost equal to that of the initial ITO film.

By changing the laser fluence, the nanowire resistances could be tuned from 15 to 73 kΩ/mm with a consistency of ±10%. Furthermore, the average transmittance of the ITO films with regular LIPSSs in the range of 1200–2000 nm was improved from 21% to 60%. The regular LIPSS is promising for transparent electrodes of nano-optoelectronic devices—particularly in the near-infrared band.
Opto-Electronic Science_1
Opto-Electronic Science_2
Opto-Electronic Science_3
Reviews and Discussions
Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
Physics-informed deep learning for fringe pattern analysis
Advancing computer-generated holographic display thanks to diffraction model-driven deep nets
Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry
Deep learning enabled single-shot absolute phase recovery in high-speed composite fringe pattern profilometry of separated objects
Exceptional-point-enhanced sensing in an all-fiber bending sensor
All-optical object identification and three-dimensional reconstruction based on optical computing metasurface
Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response
Photonic integrated neuro-synaptic core for convolutional spiking neural network
Paper-based WS₂ photodetectors fabricated by all-dry techniques
Spatiotemporal hemodynamic monitoring via configurable skin-like microfiber Bragg grating group

Previous Article                                Next Article
Copyright © Hot Paper