Photonic spin Hall effect: fundamentals and emergent applications
광자 스핀 홀 효과: 기본 및 새로운 응용
Efecto Hall de espín fotónico: fundamentos y aplicaciones emergentes
Effet Hall de spin photonique : fondamentaux et applications émergentes
Эффект фотонного спина Холла: основы и новые приложения
Shuoqing Liu 刘硕卿, Shizhen Chen 陈世祯, Shuangchun Wen 文双春, Hailu Luo 罗海陆
Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
中国 长沙 湖南大学物理与微电子科学学院 自旋光子学实验室
Opto-Electronic Science, 14 July 2022

The photonic spin Hall effect (SHE) refers to the transverse spin separation of photons with opposite spin angular momentum, after the beam passes through an optical interface or inhomogeneous medium, manifested as the spin-dependent splitting. It can be considered as an analogue of the SHE in electronic systems: the light's right-circularly polarized and left-circularly polarized components play the role of the spin-up and spin-down electrons, and the refractive index gradient replaces the electronic potential gradient.

Remarkably, the photonic SHE originates from the spin-orbit interaction of the photons and is mainly attributed to two different geometric phases, i.e., the spin-redirection Rytov-Vlasimirskii-Berry in momentum space and the Pancharatnam-Berry phase in Stokes parameter space. The unique properties of the photonic SHE and its powerful ability to manipulate the photon spin, gradually, make it a useful tool in precision metrology, analog optical computing and quantum imaging, etc.

In this review, we provide a brief framework to describe the fundamentals and advances of photonic SHE, and give an overview on the emergent applications of this phenomenon in different scenes.
Opto-Electronic Science_1
Opto-Electronic Science_2
Opto-Electronic Science_3
Reviews and Discussions
Comparative analysis of NovaSeq 6000 and MGISEQ 2000 single-cell RNA sequencing data
Integrated liver proteomics and metabolomics identify metabolic pathways affected by pantothenic acid deficiency in Pekin ducks
Influence of N-doping on dielectric properties of carbon-coated copper nanocomposites in the microwave and terahertz ranges
Discovery of novel aspartate derivatives as highly potent and selective FXIa inhibitors
Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization
Ostensibly perpetual optical data storage in glass with ultra-high stability and tailored photoluminescence
Brillouin scattering spectrum for liquid detection and applications in oceanography
3D imaging lipidometry in single cell by in-flow holographic tomography
Carnivorous plants inspired shape-morphing slippery surfaces
Piezoresistive design for electronic skin: from fundamental to emerging applications
Learning-based joint UAV trajectory and power allocation optimization for secure IoT networks
Label-free trace detection of bio-molecules by liquid-interface assisted surface-enhanced Raman scattering using a microfluidic chip

Previous Article                                Next Article
Copyright © Hot Paper