MMM
YYYY
Photonic spin Hall effect: fundamentals and emergent applications
光子自旋霍尔效应:基础和新兴应用
フォトニックスピンホール効果:基礎と創発的応用
광자 스핀 홀 효과: 기본 및 새로운 응용
Efecto Hall de espín fotónico: fundamentos y aplicaciones emergentes
Effet Hall de spin photonique : fondamentaux et applications émergentes
Эффект фотонного спина Холла: основы и новые приложения
Shuoqing Liu 刘硕卿, Shizhen Chen 陈世祯, Shuangchun Wen 文双春, Hailu Luo 罗海陆
Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
中国 长沙 湖南大学物理与微电子科学学院 自旋光子学实验室
Opto-Electronic Science, 14 July 2022
Abstract

The photonic spin Hall effect (SHE) refers to the transverse spin separation of photons with opposite spin angular momentum, after the beam passes through an optical interface or inhomogeneous medium, manifested as the spin-dependent splitting. It can be considered as an analogue of the SHE in electronic systems: the light's right-circularly polarized and left-circularly polarized components play the role of the spin-up and spin-down electrons, and the refractive index gradient replaces the electronic potential gradient.

Remarkably, the photonic SHE originates from the spin-orbit interaction of the photons and is mainly attributed to two different geometric phases, i.e., the spin-redirection Rytov-Vlasimirskii-Berry in momentum space and the Pancharatnam-Berry phase in Stokes parameter space. The unique properties of the photonic SHE and its powerful ability to manipulate the photon spin, gradually, make it a useful tool in precision metrology, analog optical computing and quantum imaging, etc.

In this review, we provide a brief framework to describe the fundamentals and advances of photonic SHE, and give an overview on the emergent applications of this phenomenon in different scenes.
Opto-Electronic Science_1
Opto-Electronic Science_2
Opto-Electronic Science_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications
A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency
Multi-wavelength nanowire micro-LEDs for future high speed optical communication
Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting
Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
Generation of lossy mode resonances (LMR) using perovskite nanofilms
Acousto-optic scanning multi-photon lithography with high printing rate
Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
Miniature tunable Airy beam optical meta-device
Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
Physics-informed deep learning for fringe pattern analysis



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper