MMM
YYYY
Planar peristrophic multiplexing metasurfaces
平面潜流复接元表面
平面潜流複素接合要素の表面
평면 잠류 복접원 표면
Superficie del elemento de reconexión de flujo sumergido plano
Méta - surface plane submersible de jonction
плоский подводный ток
Jia Chen 陈佳 ¹ ², Dapeng Wang 王大鹏 ¹ ², Guangyuan Si 司光远 ³, Siew Lang Teo ⁴, Qian Wang ⁴, Jiao Lin ⁵
¹ School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
中国 厦门 厦门大学电子科学与技术学院(国家示范性微电子学院)
² Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
中国 厦门 中国福建能源材料科学与技术创新实验室
³ Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton 3168, VIC, Australia
⁴ Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR) 2 Fusionopolis Way, Innovis 08-03, Singapore 138632, Singapore
⁵ School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
Opto-Electronic Advances, 31 August 2023
Abstract

As a promising counterpart of two-dimensional metamaterials, metasurfaces enable to arbitrarily control the wavefront of light at subwavelength scale and hold promise for planar holography and applicable multiplexing devices. Nevertheless, the degrees of freedom (DoF) to orthogonally multiplex data have been almost exhausted.

Compared with state-of-the-art methods that extensively employ the orthogonal basis such as wavelength, polarization or orbital angular momentum, we propose an unprecedented method of peristrophic multiplexing by combining the spatial frequency orthogonality with the subwavelength detour phase principle. The orthogonal relationship between the spatial frequency of incident light and the locally shifted building blocks of metasurfaces can be regarded as an additional DoF. We experimentally demonstrate the viability of the multiplexed holograms.

Moreover, this newly-explored orthogonality is compatible with conventional DoFs. Our findings will contribute to the development of multiplexing metasurfaces and provide a novel solution to nanophotonics, such as large-capacity chip-scale devices and highly integrated communication.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Dynamic spatial beam shaping for ultrafast laser processing: a review
Aberration-corrected differential phase contrast microscopy with annular illuminations
Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection
Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
Non-volatile reconfigurable planar lightwave circuit splitter enabled by laser-directed Sb2S3 phase transitions
Progress in metalenses: from single to array
30 years of nanoimprint: development, momentum and prospects
Eco-friendly quantum-dot light-emitting diode display technologies: prospects and challenges
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
Integrated photonic polarizers with 2D reduced graphene oxide
Tip-enhanced Raman scattering of glucose molecules
Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper